access icon free Performance analysis of DSTATCOM employing various control algorithms

This research work introduces a new hybrid technique called quasi-Newton back-propagation based icosϕ control algorithm. Its structure is constructed on the concept of biological features like input neuron, target neuron, weight correction and more attractive due to its parallel computing, learning capability behaviour. Systematic step-by-step procedures are represented by mathematical equations in the MATLAB/Simulink platform. The fundamental weighted values of active and reactive power components of load currents are extracted using the proposed control technique to generate the reference source currents. Further, the reference source currents are used to generate switching pulses for voltage source converter (VSC) of the distributed static compensator (DSTATCOM). It is capable enough to perform several functions such as harmonic mitigation, power factor correction, load balancing and voltage regulation which further reduce the DC link voltage across the self-supported capacitor of the VSC. Simulation and experimental validation demonstrates better performance of the suggested algorithm for operation of the DSTATCOM at different loading conditions.

Inspec keywords: backpropagation; voltage control; voltage-source convertors; static VAr compensators

Other keywords: voltage regulation; control algorithms; quasiNewton back-propagation; voltage source converter; load currents; harmonic mitigation; DSTATCOM; VSC; load balancing; reference source currents; Simulink platform; self-supported capacitor; MATLAB; power factor correction; switching pulses; distributed static compensator

Subjects: Voltage control; Other power apparatus and electric machines; Control of electric power systems; Power convertors and power supplies to apparatus

References

    1. 1)
      • 6. Singh, B., Raj, A.S.: ‘Back-propagation control algorithm for power quality improvement using DSTATCOM’, IEEE Trans. Ind. Electron., 2009, 61, (3), pp. 12041212.
    2. 2)
      • 12. Lin, F.J., Teng, L.T., Chu, H.: ‘Modified Elman neural network controller with improved particle swarm optimisation for linear synchronous motor drive’, IET Electr. Power Appl., 2008, 2, (3), pp. 201214.
    3. 3)
      • 19. Sunitha, R., Kumar, R.S., Mathew, A.T.: ‘Online static security assessment module using artificial neural networks’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 43284335.
    4. 4)
      • 8. Saribulut, L., Teke, A., Tümay, M.: ‘Artificial neural network-based discrete-fuzzy logic controlled active power filter’, IET Power Electron., 2014, 7, (6), pp. 15361546.
    5. 5)
      • 1. Benhabib, M.C., Saadate, S.: ‘New control approach for four-wire active power filter based on the use of synchronous reference frame’, Int. J. Electr. Power Energy Syst., 2005, 73, (3), pp. 353362.
    6. 6)
      • 2. Akagi, H., Watanabe, E.H., Aredes, M.: ‘Instantaneous power theory and applications to power conditioning’ (John Wiley & Sons, New Jersey, USA, 2007).
    7. 7)
      • 14. Wang, P., Zou, Y., Zou, S., et al: ‘Hopfield neural network-based estimation of harmonic currents in power systems’. 2006 6th World Congress on Intelligent Control and Automation, Dalian, 2006, pp. 74947497.
    8. 8)
      • 26. Mahela, O.P., Shaik, A.G.: Power quality improvement in distribution network using DSTATCOM with battery energy storage system’, Int. J. Electr. Power Energy Syst., 2016, 83, pp. 229240.
    9. 9)
      • 22. Saini, L.M., Soni, M.K.: ‘Artificial neural network based peak load forecasting using Levenberg–Marquardt and quasi-Newton methods’, IEE Proc. Gener. Transm. Distrib., 2002, 149, (5), pp. 578584.
    10. 10)
      • 4. Hooshmand, R.A., Esfahani, M.T.: ‘A new combined method in active filter design for power quality improvement in power systems’, ISA Trans., 2011, 50, pp. 150158.
    11. 11)
      • 23. Alaei, H.K., Yazdizadeh, A., Aliabadi, A.: ‘Nonlinear predictive controller design for load frequency control in power system using quasi Newton optimization approach’. IEEE Int. Conf. on Control Applications (CCA), Hyderabad, 2013, pp. 679684.
    12. 12)
      • 21. Valtierra-Rodriguez, M., Romero-Troncoso, R.de.J., Garcia-Perez, A., et al: ‘Reconfigurable instrument for neural-network based power-quality monitoring in 3-phase power systems’, IET. Gener. Transm. Distrib., 2013, 7, (12), pp. 14981507.
    13. 13)
      • 3. Bhubaneswari, G., Nair, M.G.: ‘Design, simulation and analog circuit implementation of a three phase shunt active filter using Icosϕ algorithm’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 12221235.
    14. 14)
      • 17. Thukaram, D., Khincha, H.P., Vijaynarasimha, H.P.: ‘Artificial neural network and support vector machine approach for locating faults in radial distribution systems’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 710721.
    15. 15)
      • 7. Qasim, M., Khadkikar, V.: ‘Application of artificial neural networks for shunt active power filter control’, IEEE Trans. Ind. Inf., 2014, 10, (3), pp. 17651774.
    16. 16)
      • 25. Panda, A.K., Patnaik, S.S.: ‘Analysis of cascaded multilevel inverters for active harmonic filtering in distribution networks’, Int. J. Electr. Power Energy Syst., 2015, 66, pp. 216226.
    17. 17)
      • 20. Bahbah, A.G., Girgis, A.A.: ‘New method for generators angles and angular velocities prediction for transient stability assessment of multimachine power systems using recurrent artificial neural network’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 10151022.
    18. 18)
      • 10. Fu, X., Li, S., Jaithwa, I.: ‘Implement optimal vector control for LCL-filter-based grid-connected converters by using recurrent neural networks’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 44434454.
    19. 19)
      • 13. Goulermas, J.Y., Liatsis, P., Zeng, X.J., et al: ‘Density-driven generalized regression neural networks (DD-GRNN) for function approximation’, IEEE Trans. Neural Netw., 2007, 18, (6), pp. 16831696.
    20. 20)
      • 16. Kim, M.K.: ‘Short-term price forecasting of Nordic power market by combination Levenberg–Marquardt and Cuckoo search algorithms’, IET Gener. Transm. Distrib., 2015, 9, (13), pp. 15531563.
    21. 21)
      • 9. Raj, A.S., Bhim, S., Ambrish, C., et al: ‘Learning-based anti-Hebbian algorithm for control of distribution static compensator’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 60046012.
    22. 22)
      • 5. Kannan, V.K., Rengarajan, N.: ‘Investigating the performance of photovoltaic based DSTATCOM using Icosϕ algorithm’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 376386.
    23. 23)
      • 11. Fang, Y., Fei, J., Ma, K.: ‘Model reference adaptive sliding mode control using RBF neural network for active power filter’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 249258.
    24. 24)
      • 24. Mitra, P., Venayagamoorthy, G.K.: ‘An adaptive control strategy for DSTATCOM applications in an electric ship power system’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 95104.
    25. 25)
      • 18. Pramelakumari, K., Anand, S.R., Raj, V.P.J., et al: ‘Short-term load forecast of a low load factor power system for optimization of merit order dispatch using adaptive learning algorithm’. Int. Conf. on Power, Signals, Controls and Computation (EPSCICON), Thrissur, Kerala, 2012, pp. 17.
    26. 26)
      • 15. Zhang, R., Dong, Z.Y., Xu, Y., et al: ‘Short-term load forecasting of Australian national electricity market by an ensemble model of extreme learning machine’, IET Gener. Transm. Distrib., 2013, 7, (4), pp. 391397.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1833
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1833
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading