Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Hadoop-based framework for big data analysis of synchronised harmonics in active distribution network

Synchronised harmonic analysis that utilises GPS signals to synchronise harmonic measurements enables advanced power quality analysis in smart grid. However, it is difficult to put this promising technology into practice due to an extremely high requirement on data storage and processing. To overcome this problem, this study presents a novel Hadoop-based framework for big data analysis of synchronised harmonics in distribution networks. The proposed framework facilitates harmonic data processing associated with data storage and advanced analysis based on big data techniques. Under this framework, a big matrix multiplication algorithm based on MapReduce programming model solving the harmonic state estimation problem is deployed in the stage of data processing. A MapReduce-based harmonics distortion calculation is implemented as an advanced analysis for harmonics. Comprehensive numerical studies are carried out to analyse the characteristics of the proposed algorithm and verify the effectiveness of the proposed framework.

References

    1. 1)
      • 37. Wache, M., Murray, D.C.: ‘Application of synchrophasor measurements for distribution networks’. IEEE Power and Energy Society General Meeting PESGM, 2011.
    2. 2)
      • 41. National biggest power quality monitoring system has been built in Guangzhou by China southern power grid’, Electr. Eng., 2014, (10), p. 41.
    3. 3)
      • 45. Chen, X., Lin, J., Wan, C., et al: ‘Optimal meter placement for distribution network state estimation: a circuit representation based MILP approach’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 43574370.
    4. 4)
      • 18. Meng, X., Bradley, J., Yavuz, B., et al: ‘MLlib: machine learning in apache spark’, J. Mach. Learn. Res., 2016, 17, (1), pp. 12351241.
    5. 5)
      • 27. Enslin, J.H.R., Heskes, P.J.M.: ‘Harmonic interaction between a large number of distributed power inverters and the distribution network’, IEEE Trans. Power Electron., 2004, 19, (6), pp. 15861593.
    6. 6)
      • 30. Medina, A., Cisneros-Magana, R.: ‘Time-domain harmonic state estimation based on the Kalman filter Poincare map and extrapolation to the limit cycle’, IET Gener. Transm. Distrib., 2012, 6, (12), pp. 12091217.
    7. 7)
      • 33. Singh, M., Khadkikar, V., Chandra, A., et al: ‘Grid interconnection of renewable energy sources at the distribution level with power-quality improvement features’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 307315.
    8. 8)
      • 13. Wan, C., Xu, Z., Pinson, P., et al: ‘Probabilistic forecasting of wind power generation using extreme learning machine’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 10331044.
    9. 9)
      • 23. Carta, A., Locci, N., Muscas, C.: ‘GPS-based system for the measurement of synchronized harmonic phasors’, IEEE Trans. Instrum. Meas., 2009, 58, (3), pp. 586593.
    10. 10)
      • 29. Yu, K.K.C., Watson, N.R., Arrillaga, J.: ‘An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 15771584.
    11. 11)
      • 1. Moghe, R., Lambert, F.C., Divan, D.: ‘Smart “stick-on” sensors for the smart grid’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 241252.
    12. 12)
      • 39. Carta, A., Locci, N., Muscas, C.: ‘A PMU for the measurement of synchronized harmonic phasors in three-phase distribution networks’, IEEE Trans. Instrum. Meas., 2009, 58, (10), pp. 37233730.
    13. 13)
      • 38. Borghetti, A., Nucci, C.A., Paolone, M., et al: ‘Synchronized phasors monitoring during the islanding maneuver of an active distribution network’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 8291.
    14. 14)
      • 15. White, T.: ‘Hadoop: The definitive guide’ (O'Reilly Media, Inc., 2012).
    15. 15)
      • 40. Demirci, T., Kalaycioglu, A., Kucuk, D., et al: ‘Nationwide real-time monitoring system for electrical quantities and power quality of the electricity transmission system’, IET Gener. Transm. Distrib., 2011, 5, (5), pp. 540550.
    16. 16)
      • 48. Burch, R., Chang, G.: ‘Characteristics and modeling of harmonic sources-power electronic devices’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 791800.
    17. 17)
      • 20. Simmhan, Y., Aman, S., Kumbhare, A., et al: ‘Cloud-based software platform for big data analytics in smart grids’, Comput. Sci. Eng., 2013, 15, (4), pp. 3847.
    18. 18)
      • 34. Almeida, C.F.M., Kagan, N.: ‘Harmonic state estimation through optimal monitoring systems’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 467478.
    19. 19)
      • 44. Muscas, C., Pilo, F., Pisano, G., et al: ‘Optimal allocation of multichannel measurement devices for distribution state estimation’, IEEE Trans. Instrum. Meas., 2009, 58, (6), pp. 19291937.
    20. 20)
      • 31. Xing, X., Lin, J., Wan, C., et al: ‘Model predictive control of LPC-looped active distribution network with high penetration of distributed generation’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 10511063.
    21. 21)
      • 21. Cao, Z., Lin, J., Wan, C., et al: ‘Optimal cloud computing resource allocation for demand side management in smart grid’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 19431955.
    22. 22)
      • 4. Albert, A., Rajagopal, R.: ‘Smart meter driven segmentation: what your consumption says about you’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 40194030.
    23. 23)
      • 43. Du, Z.P., Arrillaga, J., Watson, N.: ‘Continuous harmonic state estimation of power systems’, IEE Proc., Gener. Transm. Distrib., 1996, 143, (4), p. 329.
    24. 24)
      • 49. Bonner, A.: ‘Modeling and simulation of the propagation of harmonics in electric power networks. I. Concepts, models, and simulation techniques’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 452465.
    25. 25)
      • 35. Zelingher, S., Fardanesh, B., Uzunovic, E., et al: ‘Harmonic monitoring system via GPS-synchronized measurements – update and new developments’. Proc. Power Engineering Society General Meeting, 2006.
    26. 26)
      • 10. Zhou, Z., Chawla, N.V., Jin, Y., et al: ‘Big data opportunities and challenges: discussions from data analytics perspectives [discussion forum]’, IEEE Comput. Intell. Mag., 2014, 9, (4), pp. 6274.
    27. 27)
      • 12. Wu, X., Zhang, C., Zhang, S.: ‘Database classification for multi-database mining’, Inf. Syst., 2003, 30, (1), pp. 7188.
    28. 28)
      • 22. Tsai, S.J.S., Luo, C.C.: ‘Synchronized power-quality measurement network with LAMP’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 484485.
    29. 29)
      • 25. Aiello, M., Cataliotti, A., Cosentino, V., et al: ‘A self-synchronizing instrument for harmonic source detection in power systems’, IEEE Trans. Instrum. Meas., 2005, 54, (1), pp. 1523.
    30. 30)
      • 46. Norstad, J.: ‘A MapReduce algorithm for matrix multiplication’, 2009. Available at http://www.norstad.org/matrix-multiply/.
    31. 31)
      • 5. Peppanen, J., Reno, M.J., Thakkar, M., et al: ‘Leveraging AMI data for distribution system model calibration and situational awareness’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 20502059.
    32. 32)
      • 42. Liao, H.: ‘Power system harmonic state estimation and observability analysis via sparsity maximization’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 1523.
    33. 33)
      • 36. Kanao, N., Yamashita, M., Yanagida, H., et al: ‘Power system harmonic analysis using state-estimation method for Japanese field data’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 970977.
    34. 34)
      • 19. Khan, M., Ashton, P.M., Li, M., et al: ‘Parallel detrended fluctuation analysis for fast event detection on massive PMU data’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 360368.
    35. 35)
      • 3. Nabavi, S., Zhang, J., Chakrabortty, A.: ‘Distributed optimization algorithms for wide-area oscillation monitoring in power systems using interregional PMU-PDC architectures’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 25292538.
    36. 36)
      • 14. Wan, C., Xu, Z., Pinson, P., et al: ‘Optimal prediction intervals of wind power generation’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 11661174.
    37. 37)
      • 9. Huang, A.Q., Crow, M.L., Heydt, G.T., et al: ‘The future renewable electric energy delivery and management (FREEDM) system: the energy Internet’, Proc. IEEE, 2011, 99, (1), pp. 133148.
    38. 38)
      • 8. Xu, L.D., He, W., Li, S.: ‘Internet of things in industries: a survey’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 22332243.
    39. 39)
      • 6. Smart Electric Meters: ‘Advanced metering infrastructure, and meter communications: global market analysis and forecasts’, 2013. Available at https://www.navigantresearch.com/research/smart-meters.
    40. 40)
      • 7. Yu, N., Shah, S., Johnson, R., et al: ‘Big data analytics in power distribution systems’. Proc. Innovative Smart Grid Technologies Conf. (ISGT), 2015 IEEE Power & Energy Society, February 2015, pp. 15.
    41. 41)
      • 26. Chidurala, A., Saha, T.K., Mithulananthan, N.: ‘Harmonic impact of high penetration photovoltaic system on unbalanced distribution networks: learning from an urban photovoltaic network’, IET Renew. Power Gener., 2016, 10, (4), pp. 485494.
    42. 42)
      • 16. Dean, J., Ghemawat, S.: ‘MapReduce: simplified data processing on large clusters’, Commun. ACM, 2008, 51, (1), pp. 107113.
    43. 43)
      • 24. Laverty, D.M., Best, R.J., Brogan, P., et al: ‘The OpenPMU platform for open-source phasor measurements’, IEEE Trans. Instrum. Meas., 2013, 62, (4), pp. 701709.
    44. 44)
      • 28. Meliopoulos, A.P.S., Fan, Z., Zelingher, S.: ‘Power system harmonic state estimation’, IEEE Trans. Power Deliv., 1994, 9, (3), pp. 17011709.
    45. 45)
      • 2. Huang, J., Ge, S., Han, J., et al: ‘A diagnostic method for distribution networks based on power supply safety standards’, Prot. Control Mod. Power Syst., 2016, 1, (1), pp. 18.
    46. 46)
      • 47. Zheng, J., Zhang, L., Zhu, R., et al: ‘Parallel matrix multiplication algorithm based on vector linear combination using MapReduce’. IEEE Ninth World Congress on Proc. Services (SERVICES), 2013, 28 June 2013–3 July 2013, pp. 193200.
    47. 47)
      • 11. Hu, H., Wen, Y., Chua, T., et al: ‘Toward scalable systems for big data analytics: a technology tutorial’, IEEE Access, 2014, 2, pp. 652687.
    48. 48)
      • 32. Cai, Y., Lin, J., Wan, C., et al: ‘Stochastic Bi-level trading model for an active distribution company with DGs and interruptible loads’, IET Renew. Power Gener., 2016, 11, (2), pp. 278288.
    49. 49)
      • 17. Bu, Y., Howe, B., Balazinska, M., et al: ‘HaLoop: efficient iterative data processing on large clusters’, Proc. VLDB Endowment, 2010, 3, (1–2), pp. 285296.
    50. 50)
      • 50. Kersting, W.: ‘Radial distribution test feeders’. Proc. Power Engineering Society Winter Meeting, 2003, August 2003, pp. 908912.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1723
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1723
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address