access icon free Robust optimisation-based microgrid scheduling with islanding constraints

This study proposes a robust optimisation-based optimal scheduling model for microgrid operation considering constraints of islanding capability. The objective is to minimise the total operation cost, including generation cost and spinning reserve cost of local resources as well as purchasing cost of energy from the main grid. To ensure the resiliency of a microgrid and improve the reliability of the local electricity supply, the microgrid is required to maintain enough spinning reserve (both up and down) to meet local demand and accommodate local renewable generation when the supply of power from the main grid is interrupted suddenly, i.e. microgrid transitions from grid-connected into islanded mode. Prevailing operational uncertainties in renewable energy resources and load are considered and captured using a robust optimisation method. With proper robust level, the solution of the proposed scheduling model ensures successful islanding of the microgrid with minimum load curtailment and guarantees robustness against all possible realisations of the modelled operational uncertainties. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator and a battery demonstrate the effectiveness of the proposed scheduling model.

Inspec keywords: power generation economics; distributed power generation; photovoltaic power systems; cost reduction; optimisation; diesel-electric generators; power generation scheduling; wind turbines; power generation reliability

Other keywords: micro turbine; robust optimisation-based optimal scheduling model; numerical simulations; operational uncertainties; purchasing cost; total operation cost minimisation; islanding capability constraints; local demand; wind turbine; microgrid resiliency; local electricity supply reliability; generation cost; PV panel; fuel cell; diesel generator; robust optimisation-based microgrid scheduling; renewable energy resources; local renewable generation; spinning reserve cost

Subjects: Wind power plants; Diesel power stations and plants; Power system management, operation and economics; Distributed power generation; Solar power stations and photovoltaic power systems; Reliability; Optimisation techniques

References

    1. 1)
      • 33. Carrión, M., Arroyo, J.M.: ‘A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 13711378.
    2. 2)
      • 15. Su, W., Wang, J., Roh, J.: ‘Stochastic energy scheduling in microgrids with intermittent renewable energy resources’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18761883.
    3. 3)
      • 39. ‘CPLEX Optimizer’, http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html, accessed 4 October 2016.
    4. 4)
      • 25. Khodaei, A.: ‘Microgrid optimal scheduling with multi-period islanding constraints’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 13831392.
    5. 5)
      • 12. Sobu, A., Wu, G.: ‘Dynamic optimal schedule management method for microgrid system considering forecast errors of renewable power generations’. Proc. IEEE Int. Conf. Power Syst. Technology (POWERCON), Auckland, New Zealand, October 2012, pp. 16.
    6. 6)
      • 34. Bertsimas, D., Sim, M.: ‘Robust discrete optimization and network flows’, Math. Program. B, 2003, 98, pp. 4971.
    7. 7)
      • 21. Colson, C.M., Nehrir, M.H., Gunderson, R.W.: ‘Distributed multiagent microgrids: a decentralized approach to resilient power system self-healing’. Proc. 4th Int. Symp. Resilient Control System, Boise, ID, USA, August 2011, pp. 8388.
    8. 8)
      • 9. Morais, H., Kádár, P., Faria, P., et al: ‘Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming’, Renew. Energy, 2010, 35, (1), pp. 151156.
    9. 9)
      • 7. Gu, W., Wu, Z., Bo, R., et al: ‘Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 2637.
    10. 10)
      • 29. Bacher, P., Madsen, H., Nielsen, H.A.: ‘Online short-term solar power forecasting’, 2009, 83, pp. 17721783.
    11. 11)
      • 32. Aminifar, F., Fotuhi-Firuzabad, M., Shahidehpour, M.: ‘Unit commitment with probabilistic spinning reserve and interruptible load considerations’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 388397.
    12. 12)
      • 8. Belvedere, B., Bianchi, M., Borghetti, A., et al: ‘A microcontroller-based power management system for standalone microgrids with hybrid power supply’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 422431.
    13. 13)
      • 2. Madureira, A.G., Pecas Lopes, J.A.: ‘Coordinated voltage support in distribution networks with distributed generation and microgrids’, IET Renew. Power Gen., 2009, 3, (4), pp. 439454.
    14. 14)
      • 6. Agrawal, M., Mittal, A.: ‘Microgrid technological activities across the globe: a review’, Int. J. Res. Rev. Appl. Sci., 2011, 7, (2), pp. 147152.
    15. 15)
      • 36. ‘Tacke TW 60 (Turbine)’, http://en.wind-turbine-models.com/turbine/262/tacke/tw-60, accessed 4 October 2016.
    16. 16)
      • 10. Babazadeh, H., Gao, W., Wu, Z., et al: ‘Optimal energy management of wind power generation system in islanded microgrid system’. Proc. North American Power Symposium (NAPS), Manhattan, KS, September 2013, pp. 15.
    17. 17)
      • 13. Mohamed, F.A., Koivo, H.N.: ‘System modelling and online optimal management of microgrid using mesh adaptive direct search’, Int. J. Electr. Power Energy Syst., 2010, 32, (5), pp. 398407.
    18. 18)
      • 38. ‘Oak Ridge National Laboratory (ORNL) Rotating Shadowband Radiometer (RSR)’, https://www.nrel.gov/midc/ornl_rsr/, accessed 7 October 2016.
    19. 19)
      • 16. Nguyen, D.T., Le, L.B.: ‘Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 16081620.
    20. 20)
      • 28. Soman, S.S., Zareipour, H., Malik, O., et al: ‘A review of wind power and wind speed forecastin g methods with different time horizons’. Proc. North American Power Symp. (NAPS), Arlington, TX, USA, September 2010, pp. 18.
    21. 21)
      • 27. Carta, J., Ramrez, P., Velázquez, S.: ‘A review of wind speed probability distributions used in wind energy analysis’, Renew. Sustain. Energy Rev., 2009, 13, (5), pp. 933955.
    22. 22)
      • 31. Ortega-Vazquez, M.: ‘Optimizing the spinning reserve requirements’. PhD thesis, University of Manchester, 2006, pp. 1219.
    23. 23)
      • 22. Tsikalakis, A.G., Hatziargyriou, N.D.: ‘Operation of microgrids with demand side bidding and continuity of supply for critical loads’, Eur. Trans. Electr. Power, 2011, 21, (2), pp. 12381254.
    24. 24)
      • 23. Zhao, B., Shi, Y., Dong, X., et al: ‘Short-term operation scheduling in renewable-powered microgrids: a duality-based approach’, IEEE Trans. Sustain. Energy, 2014, 5, (1), pp. 209217.
    25. 25)
      • 35. Liu, G., Tomsovic, K.: ‘A full demand response model in co-optimized energy and reserve market’, Electr. Power Syst. Res., 2014, 111, pp. 6270.
    26. 26)
      • 11. Palma-Behnke, R., Benavides, C., Lanas, F., et al: ‘A microgrid energy management system based on the rolling horizon strategy’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 9961006.
    27. 27)
      • 40. Bertsimas, D., Litvinov, E., Sun, X.A., et al: ‘Adaptive robust optimization for the security constrained unit commitment problem’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 5263.
    28. 28)
      • 30. Ahlstrom, J.L., Zavadil, R., Grant, W.: ‘The future of wind forecasting and utility operations’, IEEE Power and Energy Magazine, 2005, 3, (6), pp. 5764.
    29. 29)
      • 20. Gouveia, C., Moreira, J., Moreira, C.L., et al: ‘Coordinating storage and demand response for microgrid emergency operation’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 18981908.
    30. 30)
      • 19. Hurtt, J., Mili, L.: ‘Residential microgrid model for disaster recovery operations’. IEEE Grenoble Conf. Proc. PowerTech (POWERTECH), Grenoble, France, June 2013, pp. 16.
    31. 31)
      • 26. Khodaei, A.: ‘Resiliency-oriented microgrid optimal scheduling’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 15841591.
    32. 32)
      • 1. ‘The CERTS Microgrid Concept’, https://certs.lbl.gov/sites/all/files/lbnl-50829.pdf, accessed October 2003.
    33. 33)
      • 3. Beer, S., Gomez, T., Dallinger, D., et al: ‘An economic analysis of used electric vehicle batteries integrated into commercial building microgrids’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 517525.
    34. 34)
      • 5. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Del., 2005, 20, (1), pp. 248257.
    35. 35)
      • 24. Wang, M.Q., Gooi, H.B.: ‘Spinning reserve estimation in microgrids’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 11641174.
    36. 36)
      • 14. Cardoso, G., Stadler, M., Siddiqui, A., et al: ‘Microgrid reliability modeling and battery scheduling using stochastic linear programming’, Electr. Power Syst. Res., 2013, 103, pp. 6169.
    37. 37)
      • 37. ‘MSX-60 and MSX-64 Photovoltaic Modules’, http://www.solarelectricsupply.com/media/custom/upload/Solarex-MSX64.pdf, accessed 17 October 2016.
    38. 38)
      • 18. Li, P., Degobert, P., Robyns, B., et al: ‘Implementation of interactivity across a resilient microgrid for power supply and exchange with an active distribution network’. Proc. Smart Grids for Distribution, IET-CIRED. CIRED Seminar, Frankfurt, Germany, June 2008, pp. 14.
    39. 39)
      • 17. Liu, G., Xu, Y., Tomsovic, K.: ‘Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 227237.
    40. 40)
      • 4. Tsikalakis, A.G., Hatziargyriou, N.D.: ‘Centralized control for optimizing microgrids operation’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 241248.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1699
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1699
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading