access icon free Intelligent busbar protection scheme based on combination of support vector machine and S-transform

Differential protection is the main protective scheme of busbar in power systems but its operation degrades during current transformer (CT) saturation conditions. In this study, the busbar differential protection scheme is improved by the addition of a new feature extracted from differential current using S-transform analysis. S-transform as a powerful signal processing technique gives a complete visualisation of the signal in both time and frequency domains. The new extracted feature as well as the magnitude of the differential and restraint currents are utilised to increase the security of traditional busbar differential protection scheme. With the addition of this new feature, distinctive regions are created in the feature space which can be separated by an appropriate classifier. In this study, the well-known classifier, i.e. support vector machine is employed to effectively discriminate internal faults from external faults. To evaluate the performance of the proposed method, a part of Iranian 400-kV power system grid is simulated in the PSCAD/EMTDC environment. The transient behaviour of CTs during saturation conditions is simulated based on the precise Jiles–Atherton model. The obtained results justify the superiority of the proposed method in terms of speed and security even in noisy conditions.

Inspec keywords: time-domain analysis; power grids; power engineering computing; transforms; power system faults; power system security; support vector machines; power system protection; busbars; frequency-domain analysis

Other keywords: time domains; support vector machine; frequency domains; restraint currents; feature space; transient behaviour; busbar differential protection scheme security; Iranian power system grid; differential currents; Jiles-Atherton model; CT saturation conditions; S-transform analysis; current transformer; PSCAD environment; intelligent busbar protection scheme; signal processing technique; internal faults; EMTDC environment; SVM; external faults; voltage 400 kV

Subjects: Integral transforms; Power system protection; Mathematical analysis; Power engineering computing; Mathematical analysis; Knowledge engineering techniques; Integral transforms

References

    1. 1)
      • 24. Stockwell, R.G., Mansinha, L., Lowe, R.P.: ‘Localization of the complex spectrum: the S transform’, IEEE Trans. Signal Process., 1996, 44, (4), pp. 9981001.
    2. 2)
      • 26. Vapnik, V.N., Vapnik, V.: ‘Statistical learning theory’ (Wiley, New York, 1998), vol. 1.
    3. 3)
      • 31. Marion, R., Scorretti, R., Siauve, N., et al: ‘Identification of Jiles–Atherton model parameters using particle swarm optimization’, IEEE Trans. Magn., 2008, 44, (6), pp. 894897.
    4. 4)
      • 25. Cortes, C., Vapnik, V.: ‘Support-vector networks’, Mach. Learn., 1995, 20, (3), pp. 273297.
    5. 5)
      • 13. Eissa, M.M.: ‘A new digital busbar protection technique based on frequency information during CT saturation’, Int. J. Electr. Power Energy Syst., 2013, 45, (1), pp. 4249.
    6. 6)
      • 6. Ristanovic, D., Branch, D., Bhatia, N., et al: ‘Bus differential protection in industrial systems with generators connected directly to the main distribution bus’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 35743583.
    7. 7)
      • 17. Yu, D.C., Cummins, J.C., Zhudin, W., et al: ‘Correction of current transformer distorted secondary currents due to saturation using artificial neural networks’, IEEE Trans. Power Deliv., 2001, 16, (2), pp. 189194.
    8. 8)
      • 20. Allah, R.A.: ‘Experimental results and technique evaluation based on alienation coefficients for busbar protection scheme’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 943954.
    9. 9)
      • 8. Mohammed, M.E.: ‘High-speed differential busbar protection using wavelet-packet transform’, IEE Proc. – Gener. Transm. Distrib., 2005, 152, (6), pp. 927933.
    10. 10)
      • 23. Guo, Z., Yao, J., Jiang, Y., et al: ‘A novel distributed unit transient protection algorithm using support vector machines’, Electr. Power Syst. Res., 2015, 123, pp. 1320.
    11. 11)
      • 34. Shi, Y., Eberhart, R.: ‘A modified particle swarm optimizer’. Proc. of IEEE Congress on Evolutionary Computation (CEC 1998), Anchorage, Alaska, 4–9 May 1998, pp. 6973.
    12. 12)
      • 32. Siemens, SIPROTEC Centralized Numerical Busbar Protection 7SS60.Ver 3.1, in Functions. 2011, SIEMENS: Germany. p. 136.
    13. 13)
      • 33. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. of IEEE Int. Conf. on Neural Networks, Piscataway, NJ, 1995, pp. 19421948.
    14. 14)
      • 28. Hajian, M., Foroud, A.A., Abdoos, A.A.: ‘New automated power quality recognition system for online/offline monitoring’, Neurocomputing, 2014, 128, pp. 389406.
    15. 15)
      • 3. Santos, A.D., Barros, M.T.C.d.: ‘Comparative analysis of busbar protection architectures’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 254261.
    16. 16)
      • 27. Ray, P.K., Mohanty, S.R., Kishor, N.: ‘Disturbance detection in grid-connected distributed generation system using wavelet and S-transform’, Electr. Power Syst. Res., 2011, 81, (3), pp. 805819.
    17. 17)
      • 9. Valsan, S.P., Swarup, K.S.: ‘Computationally efficient wavelet-transform-based digital directional protection for busbars’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 13421350.
    18. 18)
      • 10. Kang, Y.C., Yun, J.S., Lee, B.E., et al: ‘Busbar differential protection in conjunction with a current transformer compensating algorithm’, IET. Gener. Transm. Distrib., 2008, 2, (1), pp. 100109.
    19. 19)
      • 12. Eissa, M.M.: ‘Improvement of the differential busbar characteristic to avoid false operation during to CT saturation’, IET. Gener. Transm. Distrib., 2012, 6, (10), pp. 931939.
    20. 20)
      • 1. Paithankar, Y.G., Bhide, S.R.: ‘Fundamentals of power system protection’ (Prentice-Hall of lndia Private Limited, New Delhi, 2003).
    21. 21)
      • 14. Eissa, M.M.: ‘New differential busbar characteristic based on high frequencies extracted from faulted signal during current transformer saturation’, IET. Gener. Transm. Distrib., 2014, 8, (4), pp. 619628.
    22. 22)
      • 16. Hooshyar, A., Sanaye-Pasand, M., Davarpanah, M.: ‘Development of a new derivative-based algorithm to detect current transformer saturation’, IET. Gener. Transm. Distrib., 2012, 6, (3), pp. 207217.
    23. 23)
      • 19. Hong, Y.Y., Wei, D.W.: ‘Compensation of distorted secondary current caused by saturation and remanence in a current transformer’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 4754.
    24. 24)
      • 4. Ieee: ‘IEEE Guide for the Application of Current Transformers Used for Protective Relaying Purposes’, IEEE Std C37.110-2007 (Revision of Std C37.110-1996), 2008, pp. 190.
    25. 25)
      • 2. Ziegler, G.: ‘Numerical differential protection: principles and applications’ (Publicis Corporate Publishing, Germany, 2005), pp. 214229.
    26. 26)
      • 11. Gafoor, S.A., Rao, P.V.R.: ‘A transient current based busbar protection scheme using Wavelet Transforms’, Int. J. Electr. Power Energy Syst., 2011, 33, (4), pp. 10491053.
    27. 27)
      • 22. Chothani, N.G., Bhalja, B.R., Parikh, U.B.: ‘New fault zone identification scheme for busbar using support vector machine’, IET. Gener. Transm. Distrib., 2011, 5, (10), pp. 10731079.
    28. 28)
      • 18. Khorashadi-Zadeh, H., Sanaye-Pasand, M.: ‘Correction of saturated current transformers secondary current using ANNs’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 7379.
    29. 29)
      • 15. Dashti, H., Sanaye-Pasand, M., Davarpanah, M.: ‘Fast and reliable CT saturation detection using a combined method’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10371044.
    30. 30)
      • 30. Annakkage, U.D., Mclaren, P.G., Dirks, E., et al: ‘A current transformer model based on the Jiles–Atherton theory of ferromagnetic hysteresis’, IEEE Trans. Power Deliv., 2000, 15, (1), pp. 5761.
    31. 31)
      • 21. Aryanezhad, M.: ‘ADALINE-Alienation coefficients approach to busbar fault detection and classification’. 2016 21st Conf. on Electrical Power Distribution Networks Conf. (EPDC), 2016.
    32. 32)
      • 29. Manitoba HVDC Center: ‘PSCAD/EMTDC User's Manual’, Manitoba HVDC Center, Winnipeg, Canada, 2003.
    33. 33)
      • 7. Eissa, M.M.: ‘A novel wavelet approach to busbar protection during CT saturation and ratio-mismatch’, Electr. Power Syst. Res., 2004, 72, (1), pp. 4148.
    34. 34)
      • 5. Ieee: ‘IEEE Guide for Protective Relay Applications to Power System Buses’, IEEE Std C37.234-2009, 2009, pp. C1115.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1686
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1686
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading