access icon free Open-source framework for power system transmission and distribution dynamics co-simulation

The promise of the smart grid entails more interactions between the transmission and distribution networks, and there is an immediate need for tools to provide the comprehensive modelling and simulation required to integrate operations at both transmission and distribution levels. Existing electromagnetic transient simulators can perform simulations with integration of transmission and distribution systems, but the computational burden is high for large-scale system analysis. For transient stability analysis, currently there are only separate tools for simulating transient dynamics of the transmission and distribution systems. In this study, the authors introduce an open-source co-simulation framework ‘framework for network co-simulation’ (FNCS), together with the decoupled simulation approach that links existing transmission and distribution dynamic simulators through FNCS. FNCS is a middleware interface and framework that manages the interaction and synchronisation of the transmission and distribution simulators. Preliminary testing results show the validity and capability of the proposed open-source co-simulation framework and the decoupled co-simulation methodology.

Inspec keywords: distribution networks; synchronisation; power transmission; public domain software; middleware; power system transient stability; smart power grids; power system simulation

Other keywords: transient stability analysis; FNCS; framework for network co-simulation; electromagnetic transient simulators; open-source co-simulation framework; power distribution dynamics co-simulation; large-scale system analysis; distribution networks; synchronisation; middleware interface; transmission systems; power system transmission co-simulation; distribution systems; decoupled simulation approach; smart grid

Subjects: Power engineering computing; Power transmission, distribution and supply; Other distributed systems software; Power system control

References

    1. 1)
      • 15. Aristidou, P., Van Cutsem, T.: ‘A parallel processing approach to dynamic simulations of combined transmission and distribution systems’, Int. J. Electr. Power Energy Syst., 2015, 72, pp. 5865.
    2. 2)
      • 23. ‘GridLAB-D’. Available at www.gridlabd.org, accessed May 2017.
    3. 3)
      • 20. Hansen, J., Edgar, T., Daily, J., et al: ‘Evaluating transactive controls of integrated transmission and distribution systems using the framework for network co-simulation’. Proc. of the 2017 American Control Conf., Seattle, WA, USA, May 2017, pp. 18. http://acc2017.a2c2.org/.
    4. 4)
      • 17. Jain, H., Parchure, A., Broadwater, R., et al: ‘Three-phase dynamics simulation of power systems using combined transmission and distribution system models’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 45174524.
    5. 5)
      • 18. ‘FNCS’, https://github.com/GridOPTICS/FNCS-Tutorial, accessed September 2016.
    6. 6)
      • 10. Plumier, F., Aristidou, P., Geuzaine, C., et al: ‘A relaxation scheme to combine phasor-mode and electromagnetic transients simulations’. Proc. of the Power Systems Computation Conf. (PSCC), Wroclaw, Poland, USA, August 2014, pp. 17.
    7. 7)
      • 24. Elizondo, M.A., Tuffner, F.K., Schneider, K.P.: ‘Three-phase unbalanced transient dynamics and powerflow for modeling distribution systems with synchronous machines’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 105115.
    8. 8)
      • 6. Kara, E.C., Berges, M., Hug, G.: ‘Impact of disturbances on modeling of thermostatically controlled loads for demand response’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 25602568.
    9. 9)
      • 1. Kurdur, P.: ‘Power system stability and control’ (McGraw-Hill, Inc., New York, 1994).
    10. 10)
      • 2. Kersting, W.H.: ‘Distribution system modeling and analysis’ (CRC Press, New York, 2012, 3rd edn.).
    11. 11)
      • 21. ZeroMQ: ‘The intelligent transport layer’. Available at http://www.zeromq.org, accessed September 2016.
    12. 12)
      • 3. Brochu, J., Larose, C., Gagnon, R.: ‘Validation of single- and multiple-machine equivalents for modeling wind power plants’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 532541.
    13. 13)
      • 9. Zhang, Y., Gole, A.M., Wu, W., et al: ‘Development and analysis of applicability of a hybrid transient simulation platform combining TSA and EMT elements’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 357366.
    14. 14)
      • 14. Huang, Q., Vittal, V.: ‘Application of electromagnetic transient-transient stability hybrid simulation to FIDVR study’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 26342646.
    15. 15)
      • 25. Wanzeller, M.G., Alves, R., Neto, J., et al: ‘Current control loop for tracking of maximum power point supplied for photovoltaic array’, IEEE Trans. Instrum. Meas., 2004, 53, (4), pp. 13041310.
    16. 16)
      • 26. IEEE Standard for Modeling and Simulation High Level Architecture (HLA) – Framework and Rules – Redline. IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000) – Redline, 2010, pp. 1–38.
    17. 17)
      • 4. Ali, M., Chicco, G., Milanovic, J.V.: ‘Wind farm model aggregation using probabilistic clustering’, IEEE Trans. Power Syst., 2011, 28, (1), pp. 309316.
    18. 18)
      • 11. Sultan, M., Reeve, J., Adapa, R.: ‘Combined transient and dynamic analysis of HVDC and FACTS systems’, IEEE Trans. Power Deliv., 1998, 13, (4), pp. 12711277.
    19. 19)
      • 27. Pyo, G., Park, J., Moon, S.: ‘A new method for dynamic reduction of power system using PAM algorithm’. Proc. IEEE PES General Meeting, Minneapolis, MN, USAmd, July 2010.
    20. 20)
      • 12. Van, A.A., Gibescu, M., Kling, W.L., et al: ‘Advanced hybrid transient stability and EMT simulation for VSC-HVDC systems’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 10571066.
    21. 21)
      • 13. Wang, X., Wilson, P., Woodford, D.: ‘Interfacing transient stability program to EMTDC program’. Proc. 2002 Int. Conf. Power System Technology, Kunming, China, October 2002, pp. 12641269.
    22. 22)
      • 22. ‘GridPACK’. Available at www.gridpack.org, accessed May 2017.
    23. 23)
      • 8. Jalili-Marandi, V., Dinavahi, V., Strunz, K., et al: ‘Interfacing techniques for transient stability and electro-magnetic transient programs’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 23852395.
    24. 24)
      • 16. Zhang, Y., Allen, A., Hodge, B.-M.: ‘Impact of distribution-connected large-scale wind turbines on transmission system stability during large disturbances’. Proc. IEEE Power and Energy Society General Meeting, National Harbor, MD, USA, July 2014, pp. 15.
    25. 25)
      • 7. Lee, S.C., Kim, S.J., Kim, S.H.: ‘Demand side management with air conditioner loads based on the queuing system model’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 661668.
    26. 26)
      • 19. Ciraci, S., Daily, J., Fuller, J., et al: ‘FNCS: a framework for power system and communication networks co-simulation’. Proc. of the Symp. on Theory of Modeling & Simulation, San Diego, CA, USA, April 2014.
    27. 27)
      • 5. Marandi, V., Lok, P., Dinavahi, V.: ‘Real-time simulation of grid-connected wind farms using physical aggregation’, IEEE Trans. Ind. Electron., 2009, 57, (9), pp. 30103021.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1556
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1556
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading