http://iet.metastore.ingenta.com
1887

Control optimisation for pumped storage unit in micro-grid with wind power penetration using improved grey wolf optimiser

Control optimisation for pumped storage unit in micro-grid with wind power penetration using improved grey wolf optimiser

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As the large-scale wind power penetration and distributed generation become popular in modern power systems, the governing control of pumped storage unit has attracted many attentions in recent years for its flexible power adjustment capability. To provide a research platform for dynamic analysis of the hybrid power system, a micro-grid mainly including a pumped storage unit and a wind power plant is introduced in detail and taken as the system plant. Refined mathematical models of pump turbine, synchronous generator and wind turbine generator have been established considering the complicated non-linear dynamic characteristics of the multi-energy power system. Furthermore, a novel chaotic grey wolf optimiser algorithm is proposed to select the optimal control parameters of the pump turbine governing system for the sake of maintaining frequency stability and enhancing control performances under the complicated operating conditions. Simulation experiments have been conducted in the micro-grid under representative operating conditions to validate the effectiveness of the proposed control method and its preponderance in comparison with traditional ones.

References

    1. 1)
      • 1. Shivarama Krishna K. Sathish Kumar, K.: ‘A review on hybrid renewable energy systems’, Renew. Sustain. Energy Rev., 2015, 52, pp. 907916.
    2. 2)
      • 2. Ma, T., Yang, H., Lu, L.: ‘Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island’, Energy Convers. Manage., 2014, 79, pp. 387397.
    3. 3)
      • 3. Liu, Z., Chen, C., Yuan, J.: ‘Hybrid energy scheduling in a renewable micro grid’, Appl. Sci., 2015, 5, (3), pp. 516531.
    4. 4)
      • 4. Vieira, B., Viana, A., Matos, M., et al: ‘A multiple criteria utility-based approach for unit commitment with wind power and pumped storage hydro’, Electr. Power Syst. Res., 2016, 131, pp. 244254.
    5. 5)
      • 5. Chen, C., Chen, H., Lee, J.: ‘Application of a generic superstructure-based formulation to the design of wind-pumped-storage hybrid systems on remote islands’, Energy Convers. Manage., 2016, 111, pp. 339351.
    6. 6)
      • 6. Kusakana, K.: ‘Optimal scheduling for distributed hybrid system with pumped hydro storage’, Energy Convers. Manage., 2016, 111, pp. 253260.
    7. 7)
      • 7. Martínez-Lucas, G., Sarasúa, J.I., Sánchez-Fernández, J.Á., et al: ‘Frequency control support of a wind-solar isolated system by a hydropower plant with long tail-race tunnel’, Renew. Energy, 2016, 90, pp. 362376.
    8. 8)
      • 8. Xu, Y., Zhou, J., Xue, X., et al: ‘An adaptively fast fuzzy fractional order PID control for pumped storage hydro unit using improved gravitational search algorithm’, Energy Convers. Manage., 2016, 111, pp. 6778.
    9. 9)
      • 9. Lin, X., Chen, N., Hui, Li.: ‘New method on pump-turbine characteristic description and its engineering applications’, J. Tsinghua Univ., 1999, 39, (4), pp. 7476, [in Chinese].
    10. 10)
      • 10. Rakhtala, S.M., Shafiee Roudbari, E.: ‘Fuzzy PID control of a stand-alone system based on PEM fuel cell’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 576590.
    11. 11)
      • 11. Raju, S.K., Pillai, G.N.: ‘Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators’, Renew Energy, 2016, 88, pp. 4050.
    12. 12)
      • 12. Hansen, A.D., Michalke, G.: ‘Fault ride-through capability of DFIG wind turbines’, Renew. Energy, 2007, 32, (9), pp. 15941610.
    13. 13)
      • 13. Mirjalili, S., Mirjalili, S.M., Lewis, A.: ‘Grey wolf optimizer’, Adv. Eng. Softw., 2014, 69, pp. 4661.
    14. 14)
      • 14. Jayakumar, N., Subramanian, S., Ganesan, S., et al: ‘Grey wolf optimization for combined heat and power dispatch with cogeneration systems’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 252264.
    15. 15)
      • 15. Song, X., Tang, L., Zhao, S., et al: ‘Grey Wolf optimizer for parameter estimation in surface waves’, Soil Dyn. Earthq. Eng., 2015, 75, pp. 147157.
    16. 16)
      • 16. Emary, E., Zawbaa, H.M., Hassanien, A.E.: ‘Binary grey wolf optimization approaches for feature selection’, Neurocomputing, 2016, 172, pp. 371381.
    17. 17)
      • 17. Xiang, T., Liao, X., Wong, K.: ‘An improved particle swarm optimization algorithm combined with piecewise linear chaotic map’, Appl. Math. Comput., 2007, 190, (2), pp. 16371645.
    18. 18)
      • 18. Sarin, S., Hindersah, H., Prihatmanto, A.S.: ‘Fuzzy PID controllers using 8-Bit microcontroller for U-Board speed control’. System Engineering and Technology (ICSET), 2012 Int. Conf. on. IEEE, 2012, pp. 16.
    19. 19)
      • 19. Sahu, B.K., Pati, T.K., Nayak, J.R., et al: ‘A novel hybrid LUS–TLBO optimized fuzzy-PID controller for load frequency control of multi-source power system’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 5869.
    20. 20)
      • 20. Fan, R., Zhao, J., Pan, B., et al: ‘Automatic generation control of three-area small hydro system based on fuzzy PID control’. 2014 Int. Conf. on. IEEE, Power System Technology (POWERCON), 2014, pp. 25222528.
    21. 21)
      • 21. De Jaeger, E., Janssens, N., Malfliet, B., et al: ‘Hydro turbine model for system dynamic studies’, IEEE Trans. Power Syst., 1994, 9, (4), pp. 17091715.
    22. 22)
      • 22. Wamkeue, R., Jolette, C., Mabwe, A.B.M., et al: ‘Cross-identification of synchronous generator parameters from RTDR test time-domain analytical responses’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 776786.
    23. 23)
      • 23. Ma, F., Zhang, T., Niu, W.: ‘Nonlinear inverse modeling of synchronous generator based on improved resource allocating networks’. Intelligent Computation Technology and Automation, 2009. ICICTA'09. Second Int. Conf. on. IEEE, 2009, vol. 2, pp. 124127.
    24. 24)
      • 24. Li, S., Haskew, T.A.: ‘Characteristic study of vector-controlled doubly-fed induction generator in stator-flux-oriented frame’, Electr. Power Compon. Syst., 2008, 36, (9), pp. 9901015.
    25. 25)
      • 25. Hansen, A.D., Sørensen, P., Iov, F., et al: ‘Overall control strategy of variable speed doubly-fed induction generator wind turbine’. Proc. of Wind Power Nordic Conf., Chalmers tekniska högskola, 2004.
    26. 26)
      • 26. Kamel, R.M., Nagasaka, K.: ‘Effect of load type on standalone micro grid fault performance’, Appl. Energy, 2015, 160, pp. 532540.
    27. 27)
      • 27. He, Y., Zhou, J., Xiang, X., et al: ‘Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling’, Chaos Solitons Fractals, 2009, 42, (5), pp. 31693176.
    28. 28)
      • 28. Yuan, X., Zhang, T., Dai, X., et al: ‘Master–slave model-based parallel chaos optimization algorithm for parameter identification problems’, Nonlinear Dynam., 2016, 83, (3), pp. 17271741.
    29. 29)
      • 29. Liu, B., Wang, L., Jin, Y., et al: ‘Improved particle swarm optimization combined with chaos’, Chaos Solitons Fractals, 2005, 25, (5), pp. 12611271.
    30. 30)
      • 30. Scherer, L.G., de Camargo, R.F.: ‘Control of micro hydro power stations using nonlinear model of hydraulic turbine applied on microgrid systems’. XI Brazilian Power Electronics Conf. IEEE, 2011, pp. 812818.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1537
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1537
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address