access icon free ANFIS-based sensor fault-tolerant control for hybrid grid

This paper describes an intelligent sensor fault detection and compensation (FDC) scheme for a hybrid grid involving renewable energy (RE) sources with power electronic interfaces. To evaluate the sensor FDC scheme, a wound rotor induction generator (WRIG)-based wind energy system connected to the hybrid grid is examined. The system employs a WRIG with excitation from DC RE grid via a single, rotor side converter. To analyse the dynamic performance, a decoupled voltage vector control is employed. The sensors involved in the control algorithm may not be ideal and if fault occurs might lead to system collapse. To overcome electrical sensor failure, a robust, intelligent sensor fault control scheme is proposed with ANFIS. A hardware-free solution with PLL block is proposed for mechanical sensor fault. The ANFIS-based FDC scheme involves a bank of observers that computes residuals, detects and isolates faults. When fault occurs, the observer output is utilised for the execution of control algorithm thereby avoiding system collapse. The focused system is simulated in MATLAB and experimentally tested with a dSPACE controller for various fault scenarios. The results show the effectiveness of the FDC scheme.

Inspec keywords: power generation control; power generation faults; fault tolerant control; intelligent sensors; power convertors; robust control; electric sensing devices; phase locked loops; fuzzy control; rotors; power grids; wind power plants; neurocontrollers; fault diagnosis; adaptive control; voltage control; observers; power system dynamic stability; asynchronous generators

Other keywords: intelligent sensor fault detection and compensation scheme; wound rotor induction generator-based wind energy system; dynamic performance analysis; renewable energy source; ANFIS-based FDC scheme; electrical sensor failure; hardware-free solution; hybrid grid; WRIG-based wind energy system; dSPACE controller; RE source; fault isolation; decoupled voltage vector control; ANFIS-based sensor fault tolerant control; system collapse; power electronic interface; observer; PLL block; DC RE grid; single rotor side converter

Subjects: Control of electric power systems; Neurocontrol; Fuzzy control; Power convertors and power supplies to apparatus; Asynchronous machines; Voltage control; Intelligent sensors; Self-adjusting control systems; Wind power plants; Simulation, modelling and identification

References

    1. 1)
      • 29. Freire, N.M.A., Estima, J.O, Cardoso, A.J.M.: ‘A New Approach for current sensor fault diagnosis in PMSG drives for wind energy conversion systems’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 12061214.
    2. 2)
      • 40. Wang, L., Thi, M.S.: ‘Stability enhancement of a PMSG based and a DFIG based offshore wind farm fed to a multi machine system through an LCC-HVDC link’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 33273334.
    3. 3)
      • 42. Jang, J.S.R.: ‘ANFIS: adaptive network base fuzzy inference system’, IEEE Trans. Syst. Man Cybern., 1993, 23, (3), pp. 665685.
    4. 4)
      • 17. Wei, F., Zhang, X., Vilathgamuwa, D., et al: ‘Mitigation of distorted and unbalanced stator voltage of stand-alone doubly fed induction generators using repetitive control technique’, IET Electr. Power Appl., 2013, 7, (8), pp. 654663.
    5. 5)
      • 3. Galloway, S., Bell, G., Burt, G., et al: ‘Managing the risk of trading wind energy in a competitive market’, IET Gener. Transm. Distrib., 2006, 153, (1), pp. 106114.
    6. 6)
      • 4. Datta, R., Ranganathan, V.T.: ‘Variable-speed wind power generation using doubly fed wound rotor induction machine – a comparison with alternative schemes’, IEEE Trans. Energy Convers., 2002, 17, (3), pp. 414421.
    7. 7)
      • 9. Rezaei, E., Tabesh, A., Ebrahimi, M.: ‘Dynamic model and control of DFIG wind energy systems based on power transfer matrix’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 14851493.
    8. 8)
      • 38. Karimi, S., Gaillard, A., Poure, P., et al: ‘Current sensor fault tolerant control for WECS with DFIG’, IEEE Trans. Ind. Electron., (209), 56, (11), pp. 46604670.
    9. 9)
      • 27. Djeziri, M.A., Merzouki, R., Bouamama, B.O, et al: ‘Fault diagnosis and fault tolerant control of an electric vehicle over actuated’, IEEE Trans. Veh. Technol., 2013, 62, (3), pp. 986994.
    10. 10)
      • 36. Li, D.Y., Song, Y.D., Gan, Z.X, et al: ‘Fault-tolerant optimal tip-speed-ratio tracking control of wind turbines subject to actuation failures’, IEEE Trans. Ind. Inf., 2015, 62, (12), pp. 75137523.
    11. 11)
      • 2. Zhang, X.P., Rehtanz, C., Song, Y.: ‘A grid for tomorrow’, IET Power Eng., 2006, 20, (5), pp. 2227.
    12. 12)
      • 22. Bachir, S., Tnani, S., Trigeassou, J., et al: ‘Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines’, IEEE Trans. Ind. Electron., 2007, 53, (3), pp. 963973.
    13. 13)
      • 18. Mishra, S., Mallesham, G., Jha, A.N.: ‘Design of controller and communication for frequency regulation of a smart microgrid’, IET Renew. Power Gener., 2012, 6, (4), pp. 248258.
    14. 14)
      • 21. Karimi, S., Gaillard, A., Poure, P., et al: ‘FPGA based real time power converter failure diagnosis for wind energy conversion systems’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 42994308.
    15. 15)
      • 25. Zhang, X., Foo, G., Vilathgamuwaand, M.D., et al: ‘Sensor fault detection, isolation and system reconfiguration based on extended Kalman filter for induction motor drives’, IET Electr. Power Appl., 2013, 7, (7), pp. 607617.
    16. 16)
      • 15. Soliman, M., Malik, O.P, Westwick, D.T.: ‘Multiple model predictive control for wind turbines with doubly fed induction generators’, IEEE Trans. Sustain. Energy, 2011, 2, (3), pp. 215225.
    17. 17)
      • 26. Kommuri, S.K., Rath, J.J., Veluvoluand, K.C., et al: ‘Decoupled current control and sensor fault detection with second-order sliding mode for induction motor’, IET Control Theory Appl., 2014, 9, (4), pp. 608617.
    18. 18)
      • 16. Huang, H., Chung, C.Y.: ‘Coordinated damping control design for DFIG-based wind generation considering power output variation’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 19161925.
    19. 19)
      • 31. Rothenhagen, K., Fuchs, F.W.: ‘Doubly fed induction generator model based sensor fault detection and control loop reconfiguration’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 42294238.
    20. 20)
      • 6. Chen, S.Z., Cheung, N.C., Wong, K.C, et al: ‘Integral sliding-mode direct torque control of doubly-fed induction generators’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 356369.
    21. 21)
      • 8. Li, S., Haskew, T.A., Williams, K.A, et al: ‘Control of DFIG wind turbine with direct-current vector control configuration’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 111.
    22. 22)
      • 39. Singh, M., Chandra, A.: ‘Real time implementation of ANFIS control for renewable interfacing inverter in 3P4W distribution network’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 121128.
    23. 23)
      • 5. Tremblay, E., Atayde, S., Chandra, A.: ‘Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: a DSP-based implementation approach’, IEEE Trans. Sustain. Energy, 2011, 2, (3), pp. 288300.
    24. 24)
      • 20. Shahabi, M., Haghifam, M.R., Mohamadian, M., et al: ‘Microgrid dynamic performance improvement using a doubly fed induction wind generator’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 137145.
    25. 25)
      • 13. Jain, A.K, Ranganathan, V.T.: ‘Wound rotor induction generator with sensorless control and integrated active filter for feeding nonlinear loads in a stand-alone grid’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 218228.
    26. 26)
      • 30. Santhi, R., Uma, G., Santhakumar, S., et al: ‘Intelligent sensor fault tolerant control of variable speed wind electrical systems’, IET Power Electron., 2013, 6, (7), pp. 13081319.
    27. 27)
      • 24. Ko, Y.J., Lee, K.B., Lee, D.C., et al: ‘Fault diagnosis of three-parallel voltage-source converter for a high-power wind turbine’, IET Power Electron., 2012, 5, (7), pp. 10581067.
    28. 28)
      • 10. Mohammadi, J., Vaez-Zadeh, S., Afsharnia, S., et al: ‘A combined vector and direct power control for DFIG-based wind turbines’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 767775.
    29. 29)
      • 33. Kamal, E., Aitouche, A., Ghorbani, R., et al: ‘Robust fuzzy fault tolerant control of wind energy conversion systems subject to sensor faults’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 231241.
    30. 30)
      • 37. Das, B.: ‘Fuzzy logic-based fault-type identification in unbalanced radial power distribution system’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 278285.
    31. 31)
      • 23. Wallmark, O., Harnefors, L., Carlson, O.: ‘Control algorithms for a fault-tolerant PMSM drive’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 19731980.
    32. 32)
      • 11. Zhang, Y., Hu, J., Zhu, J.: ‘Three-vectors-based predictive direct power control of the doubly fed induction generator for wind energy applications’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 34853500.
    33. 33)
      • 28. Youssef, A.B., Khil, S.K.E., Belkhodja, I.S.: ‘State observer based sensor fault detection and isolation and fault tolerant control of a single phase PWM rectifier for electric railway traction’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 58425853.
    34. 34)
      • 19. Farag, H.E., Abdelaziz, M.M.A., El-Saadany, E.F.: ‘Voltage and reactive power impacts on successful operation of islanded microgrids’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 17161725.
    35. 35)
      • 41. Gonzalez, M.R, Malik, O.P.: ‘Power system stabilizer design using an online adaptive neuro fuzzy controller with adaptive input link weights’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 914922.
    36. 36)
      • 14. Zhang, J.F., Tse, C.T., Wang, K.W, et al: ‘Voltage stability analysis considering the uncertainties of dynamic load parameters’, IET Gener. Transm. Distrib., 2009, 3, (10), pp. 941948.
    37. 37)
      • 32. Garcia, P., Garcia, C.A., Fernandez, L.M., et al: ‘ANFIS based control of a grid connected hybrid system integrating renewable energies, hydrogen and batteries’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 11071117.
    38. 38)
      • 7. Hu, J., Nian, H., Xu, H., et al: ‘Dynamic modeling and improved control of DFIG under distorted grid voltage conditions’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 163175.
    39. 39)
      • 12. Mishra, Y., Mishra, S., Tripathy, M., et al: ‘Improving stability of a DFIG-based wind power system with tuned damping controller’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 650660.
    40. 40)
      • 34. Kazemi, S., Millar, R.J, Lehtonen, M.: ‘Criticality analysis of failure to communicate in automated fault-management schemes’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 10831091.
    41. 41)
      • 35. Sekhar, P.C., Mishra, S., Sharma, R.: ‘Data analytics based neuro-fuzzy controller for diesel-photovoltaic hybrid AC microgrid’, IET Gener. Transm. Distrib., 2015, 9, (2), pp. 193207.
    42. 42)
      • 1. Kennel, F., Gorges, D., Liu, S.: ‘Energy management for smart grids with electric vehicles based on hierarchical MPC’, IEEE Trans. Ind. Inf., 2013, 9, (3), pp. 15281537.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1465
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1465
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading