http://iet.metastore.ingenta.com
1887

Large-scale transmission expansion planning: from zonal results to a nodal expansion plan

Large-scale transmission expansion planning: from zonal results to a nodal expansion plan

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Performing optimal transmission expansion planning (TEP) in real, large-scale power systems such as the European one can be an unmanageable task, especially when long-term time scopes and multiple scenarios are considered. Project e-Highway had the daunting objective of planning the European network for the very long term and under high renewable energy penetration. The project objectives included the development of a planning methodology capable of applying optimisation to large-scale systems that are currently unmanageable in practice. This study presents this approach, which is based on simplifying the system while keeping its main features and investment drivers. The simplified system is then expanded optimally for the full time scope. Last, the original system is expanded optimally for the first time horizon taking into account the constraints imposed by the full time-scope optimisation of the simplified system. It illustrates the applicability of the method with a case study based on the European Union.

References

    1. 1)
      • 1. McCalley, J.D., Aliprantis, D., Dobson, D., et al: ‘High capacity interregional transmission system design’. Report for RTE, 2013.
    2. 2)
      • 2. Lumbreras, S., Ramos, A.: ‘The new challenges to transmission expansion planning. Survey of recent practice and literature review’, Electr. Power Syst. Res., 2016, 134, pp. 1929.
    3. 3)
      • 3. Villasana, R., Garver, L.L., Salon, S.J.: ‘Transmission network planning using linear programming’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, pp. 349356.
    4. 4)
      • 4. Haffner, S., Monticelli, A., Garcia, A., et al: ‘Branch and bound algorithm for transmission system expansion planning using a transportation model’, IEE Proc., Gener. Transm. Distrib., 2000, 147, pp. 149156.
    5. 5)
      • 5. Rider, M., Garcia, A., Romero, R.: ‘Power system transmission network expansion planning using AC model’, IET Gener. Transm. Distrib., 2007, 1, pp. 731742.
    6. 6)
      • 6. Gallego, R.A., Monticelli, A., Romero, R.: ‘Transmission system expansion planning by an extended genetic algorithm’, IEE Proc., Gener. Transm. Distrib., 1998, 145, pp. 329335.
    7. 7)
      • 7. Romero, R., Gallego, R.A., Monticelli, A.: ‘Transmission system expansion planning by simulated annealing’. IEEE Power Industry Computer Application Conf., 1995. Conf. Proc., 1995, 1995, pp. 278283.
    8. 8)
      • 8. Sum-Im, T., Taylor, G.A., Irving, M.R., et al: ‘Differential evolution algorithm for static and multistage transmission expansion planning’, IET Gener. Transm. Distrib., 2009, 3, pp. 365384.
    9. 9)
      • 9. Binato, S., de Oliveira, G.C., de Araujo, J.L.: ‘A greedy randomized adaptive search procedure for transmission expansion planning’, IEEE Trans. Power Syst., 2001, 16, pp. 247253.
    10. 10)
      • 10. Teive, R.C.G., Silva, E.L., Fonseca, L.G.S.: ‘A cooperative expert system for transmission expansion planning of electrical power systems’, IEEE Trans. Power Syst., 1998, 13, pp. 636642.
    11. 11)
      • 11. Dehghan, S., Kazemi, A., Amjady, N.: ‘Multi-objective robust transmission expansion planning using information-gap decision theory and augmented ɛ-constraint method’, IET Gener. Transm. Distrib., 2014, 8, pp. 828840.
    12. 12)
      • 12. Alizadeh, B., Dehghan, S., Amjady, N., et al: ‘Robust transmission system expansion considering planning uncertainties’, IET Gener. Transm. Distrib., 2013, 7, pp. 13181331.
    13. 13)
      • 13. Sun, H., Yu, D.C.: ‘A multiple-objective optimization model of transmission enhancement planning for independent transmission company (ITC)’. Power Engineering Society Summer Meeting, 2000, 2000, vol. 4, pp. 20332038.
    14. 14)
      • 14. e-Highway2050: ‘D8.6a: Detailed enhanced methodology to define the optimal modular plan’, 2015. Available at http://www. e-highway2050. eu/results.
    15. 15)
      • 15. van der Weijde, A.H., Hobbs, B.F.: ‘The economics of planning electricity transmission to accommodate renewables:using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty’, Energy Econ., 2012, 34, pp. 20892101.
    16. 16)
      • 16. Wang, H., Liu, R., Li, W., et al: ‘Power flow tracing with consideration of the electrical distance’. Power and Energy Engineering Conf., 2009, APPEEC 2009, Asia-Pacific, 2009, pp. 14.
    17. 17)
      • 17. Hamon, C., Shayesteh, E., Amelin, M., et al: ‘Two partitioning methods for multi-area studies in large power systems’, Int. Trans. Electr. Energy Syst., 2015, 25, (4), pp. 648660..
    18. 18)
      • 18. Cotilla-Sanchez, E., Hines, P.D.H., Barrows, C.: ‘Multi-attribute partitioning of power networks based on electrical distance’, IEEE Trans. Power Syst., 2013, 28, pp. 49794987.
    19. 19)
      • 19. Lumbreras, S., Ramos, A., Olmos, L., et al: ‘Network partition based on critical branches for large-scale transmission expansion planning’. IEEE PowerTech, 2015, Eindhoven, 2015, pp. 16.
    20. 20)
      • 20. Blumsack, S., Hines, P., Patel, M., et al: ‘Defining power network zones from measures of electrical distance’. Power & Energy Society General Meeting, 2009, PES '09, 2009, pp. 18.
    21. 21)
      • 21. Shi, D., Tylavsky, D.J.: ‘An improved bus aggregation technique for generating network equivalents’. IEEE Power and Energy Society General Meeting, 2012, 2012, pp. 18.
    22. 22)
      • 22. Papaemmanouil, A., Andersson, G.: ‘On the reduction of large power system models for power market simulations’. Working Paper, ETH Zurich. Available at http://www.Eeh.Ee.Ethz.ch/uploads/tx_ethpublications/PSCC2011_Antonios.Pdf.
    23. 23)
      • 23. Lumbreras, S., Ramos, A., Sánchez, P.: ‘Automatic selection of candidate investments for transmission expansion planning’, Int. J. Electr. Power Energy Syst., 2014, 59, pp. 130140.
    24. 24)
      • 24. Binato, S., Pereira, M.V.F., Granville, S.: ‘A new benders decomposition approach to solve power transmission network design problems’, IEEE Trans. Power Syst., 2001, 16, p. 235.
    25. 25)
      • 25. Lumbreras, S., Ramos, A.: ‘Transmission expansion planning using an efficient version of benders’ decomposition. A case study’. IEEE PowerTech (POWERTECH), 2013, Grenoble, 2013, pp. 17.
    26. 26)
      • 26. Lumbreras, S., Ramos, A.: ‘How to solve the transmission expansion planning problem faster: acceleration techniques applied to Benders’ decomposition’, IET. Gener. Transm. Distrib., 2016, 10, (10), pp. 23512359.
    27. 27)
      • 27. Entso-e: ‘ENTSO-E Memo 2012’, 2013.
    28. 28)
      • 28. Ploussard, Q., Olmos Camacho, L., Ramos Galán, A.: ‘An uncertainty reduction technique for short-term transmission expansion planning based on line benefits’, 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1441
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1441
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address