access icon free Decomposition-based approach to risk-averse transmission expansion planning considering wind power integration

The increasing penetration of wind power (WP) and demand response (DR) programs into modern power systems poses more challenges on transmission expansion planning (TEP). To ensure the economical, secure and reliable operations of power systems, this study presents a risk-averse TEP framework. Instead of using the deterministic security criterion, an insecurity risk cost (RC) is proposed to provide network planners with the insight into the problem, options and future implications in decision making. Specifically, this RC can quantify the system security degree, considering the probability and the severity of contingencies. Meanwhile, the economic value of DR is modelled and incorporated into the optimal operation solutions. Moreover, to enhance the computational efficiency, an iterative solution algorithm based on the Benders decomposition is developed to solve the formulated TEP problem. The proposed approach is numerically verified on the Garver's 6-bus, IEEE 24-bus RTS, and 2383-bus polish systems. Case study results demonstrate that the proposed approach can effectively investigate the impacts of large-scale integration of WP and DR on system operations and planning. Moreover, the proposed risk-averse approach is economically efficient and more robust to stochastic variations.

Inspec keywords: power transmission planning; demand side management; wind power

Other keywords: risk-averse TEP framework; TEP; 2383-bus polish system; risk-averse transmission expansion planning; wind power integration; IEEE 24-bus RTS system; stochastic variations; deterministic security criterion; Garver's 6-bus system; Benders decomposition; decomposition-based approach; insecurity risk cost

Subjects: Wind power plants; Power system management, operation and economics; Power system planning and layout

References

    1. 1)
      • 7. Van Cutsem, T., Vournas, C.: ‘Voltage stability of electric power systems’ (Kluwer, Norwell, MA, 1998).
    2. 2)
      • 32. Hong, H.P.: ‘An efficient point estimate method for probabilistic analysis’, Reliab. Eng. Syst. Saf., 1998, 59, (3), pp. 261267.
    3. 3)
      • 13. Gu, Y., McCalley, J.D., Ming, N.: ‘Coordinating large-scale wind integration and transmission planning’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 652659.
    4. 4)
      • 34. Xu, Y., Dong, Z.Y., Zhang, R., et al: ‘Solving preventive-corrective SCOPF by a hybrid computational strategy’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 13451355.
    5. 5)
      • 6. de J Silva, I., Rider, M.J., Romero, R., et al: ‘Transmission network expansion planning with security constraints’, IET. Gener. Transm. Distrib., 2005, 152, (6), pp. 828836.
    6. 6)
      • 25. Shrestha, G.B., Fonseka, P.A.J.: ‘Congestion-driven transmission expansion in competitive power markets’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 16581665.
    7. 7)
      • 4. Li, C.X., Dong, Z.Y., Chen, G., et al: ‘Flexible transmission expansion planning associated with large-scale wind farms integration considering demand response’, IET. Gener. Transm. Distrib., 2015, 9, (15), pp. 22762283.
    8. 8)
      • 20. Ugranli, F., Karatepe, E.: ‘Transmission expansion planning for wind turbine integrated power systems considering contingency’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 14761485.
    9. 9)
      • 31. Beltran, B., Ahmed-Ali, T., Benbouzid, M.E.H.: ‘High-order sliding-mode control of variable-speed wind turbines’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 33143321.
    10. 10)
      • 35. Asadamongkol, S., Eua-arporn, B.: ‘Transmission expansion planning with AC model based on generalized Benders decomposition’, Int. J. Electr. Power Energy Syst., 2013, 47, pp. 402407.
    11. 11)
      • 33. Eydeland, A., Wolyniec, K.: ‘Energy and power risk management’ (Wiley, Chichester, UK, 2003).
    12. 12)
      • 40. Matpower 5.0-Description of case 2383wp. Available at http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/case2383wp.html.
    13. 13)
      • 24. Arroyo, J., Manuel, N.A., Carrion, M.: ‘A risk-based approach for transmission network expansion planning under deliberate outages’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 17591766.
    14. 14)
      • 9. Billinton, R., Yi, G., Karki, R.: ‘Application of a joint deterministic-probabilistic criterion to wind integrated bulk power system Planning’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 13841392.
    15. 15)
      • 41. Australian Energy Market Operator (AEMO)-Value of Customer Reliability (VCR) review. Available at http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/Value-of-Customer-Reliability-review.
    16. 16)
      • 3. Qiu, J., Dong, Z.Y., Zhao, J., et al: ‘A risk-based approach to multi-stage probabilistic transmission network planning’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 48674876.
    17. 17)
      • 27. Nguyen, D.T., Negnevitsky, M., Groot, M.d.: ‘Market-based demand response scheduling in a degregulated environment’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 19481956.
    18. 18)
      • 21. Rahmani, M., Romero, R., Rider, M.J.: ‘Risk/investment-driven transmission expansion planning with multiple scenarios’, IET. Gener. Transm. Distrib., 2013, 7, (2), pp. 154165.
    19. 19)
      • 16. Alhamrouni, I., Khairuddin, A., Ferdavani, A.K., et al: ‘Transmission expansion planning using AC-based differential evolution algorithm’, IET. Gener. Transm. Distrib., 2014, 8, (10), pp. 16371644.
    20. 20)
      • 11. Alizadeh, B., Dehghan, S., Amjady, N., et al: ‘Robust transmission system expansion considering planning uncertainties’, IET. Gener. Transm. Distrib., 2013, 7, (11), pp. 13181331.
    21. 21)
      • 29. Abdollahi, A., Moghaddam, M.P., Rashidinejad, M., et al: ‘Investigation of economic and environmental-driven demand response measures incorporating UC’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 1225.
    22. 22)
      • 23. Zhao, J.H., Dong, Z.Y., Lindsay, P., et al: ‘Flexible transmission expansion planning with uncertainties in an electricity Market’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 479488.
    23. 23)
      • 28. Mashhour, E., Moghaddas-Tafreshi, S.M.: ‘Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-part I: problem formulation’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 949956.
    24. 24)
      • 26. Conejo, A.J., Carrion, M., Morales, J.M.: ‘Decision making under uncertainty in electricity markets’ (Springer, New York, NY, USA, 2010).
    25. 25)
      • 37. Majidi-Qadikolai, M., Baldick, R.: ‘Stochastic transmission capacity expansion planning with special scenario selection for integrating N − 1 contingency analysis’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 49014912.
    26. 26)
      • 5. Ozdemir, O., Munoz, F.D., Ho, J.L., et al: ‘Economic analysis of transmission expansion planning with price-responsive demand and quadratic losses by successive LP’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 10961107.
    27. 27)
      • 8. Billinton, R., Allan, R.: ‘Reliability evaluation of power systems’ (Plenum Press, New York, 1996, 2nd edn.).
    28. 28)
      • 39. Reliability Test System Task Force of Probability Methods Sub-committee: ‘IEEE reliability test system’, IEEE Trans., 1979, PAS-98, pp. 20472054.
    29. 29)
      • 30. Zhao, J.H., Wen, F.S., Dong, Z.Y., et al: ‘Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization’, IEEE Trans. Ind. Inf., 2012, 8, (4), pp. 889899.
    30. 30)
      • 38. Wu, H., Shahidehpour, M., Al-Abdulwahab, A.: ‘Hourly demand response in day-ahead scheduling for managing the variability of renewable energy’, IET. Gener. Transm. Distrib., 2013, 7, (3), pp. 226234.
    31. 31)
      • 18. Kazerooni, A.K., Mutale, J.: ‘Transmission network planning under security and environmental constraints’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 11691178.
    32. 32)
      • 14. Munoz, C., Sauma, E., Contreras, J., et al: ‘Impact of high wind power penetration on transmission network expansion planning’, IET. Gener. Transm. Distrib., 2012, 6, (12), pp. 12811291.
    33. 33)
      • 12. Park, H., Baldick, R.: ‘Transmission planning under uncertainties of wind and load: sequential approximation approach’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 23952402.
    34. 34)
      • 15. Alguacil, N., Motto, A.L., Conejo, A.J.: ‘Transmission expansion planning: A mixed-integer LP approach’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10701077.
    35. 35)
      • 10. Roh, J.H., Shahidehpour, M., Wu, L.: ‘Market-based generation and transmission planning with uncertainties’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 15871598.
    36. 36)
      • 17. Choi, J., Tran, T., El-Keib, A.A., et al: ‘A method for tranmission system expansion planning considering probabilistic reliability criteria’, IEEE Trans. Power Syst., 2005, 29, (3), pp. 16061615.
    37. 37)
      • 1. Khodaei, A., Shahidehpour, M., Wu, L., et al: ‘Coordination of short-term operation constraints in multi-area expansion planning’, IEEE Trans. Power Syst.., 2012, 27, (4), pp. 22422250.
    38. 38)
      • 2. Maghouli, P., Hosseini, S.H., Buygi, M.O., et al: ‘A scenario-based multi-objective model for multi-stage transmission expansion planning’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 470478.
    39. 39)
      • 22. Alvarez Lopez, J., Ponnambalam, K., Quintana, V.H.: ‘Generation and transmission expansion under risk using stochastic programming’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 13691378.
    40. 40)
      • 36. Munoz, F.D., Hobbs, B.F., Watson, J.P.: ‘New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints’, Eur. J. Oper. Res., 2016, 248, (3), pp. 888898.
    41. 41)
      • 19. Zhang, H., Vittal, V., Heydt, G.T., et al: ‘A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning’, IEEE Trans. Power Syst.., 2012, 27, (2), pp. 11251133.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1439
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1439
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading