access icon free Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders

This study presents a comparison of two developed intelligent systems that carries out, in an integrated manner, failure diagnosis on electric power distribution feeders. These procedures aim to identify and classify critical situations, as high-impedance faults, which can potentially damage the system components and cause power supply interruptions to consumers. The intelligent systems combine the wavelet transform, Dempster–Shafer evidence theory, voting scheme, fuzzy inference system and artificial neural networks. Results show the efficiency, reliability, and robustness of the proposed methodology, allowing its real-time application.

Inspec keywords: power engineering computing; fuzzy reasoning; power distribution faults; neural nets; wavelet transforms; fuzzy set theory; fault diagnosis

Other keywords: power supply interruptions; fuzzy based methodology; Dempster-Shafer evidence theory; artificial neural networks; radial distribution feeders; voting scheme; high-impedance fault diagnosis; , fuzzy inference system; intelligent systems; wavelet transform; electric power distribution feeders; system components

Subjects: Knowledge engineering techniques; Power engineering computing; Neural computing techniques; Combinatorial mathematics; Integral transforms; Integral transforms; Distribution networks; Combinatorial mathematics

References

    1. 1)
      • 31. Emanuel, A.E., Gulachenski, E.M.: ‘High impedance fault arcing on sandy soil in 15 kV distribution feeders: contributions to the evaluation of the low frequency spectrum’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 676686.
    2. 2)
      • 10. Torres, V., Guardado, J.L., Ruiz, H.F., et al: ‘Modeling and detection of high impedance faults’, Int. J. Electr. Power Energy Syst., 2014, 61, (10), pp. 163172.
    3. 3)
      • 23. Barros, A.C., Tonelli-Neto, M.S., Decanini, J.G.M.S., et al: ‘Detection and classification of voltage disturbances in electrical power systems using a modified Euclidean ARTMAP neural network with continuous training’, Electr. Power Compon. Syst., 2015, 43, (19), pp. 111.
    4. 4)
      • 19. Mendel, J.M.: ‘Fuzzy logic systems for engineering: a tutorial’, Proc. IEEE, 1995, 83, (3), pp. 345377.
    5. 5)
      • 20. Kandel, A.: ‘Fuzzy control systems’ (CRC Press, 1993, 1st edn.).
    6. 6)
      • 22. Carpenter, G.A., Grossberg, S., Markuzon, N., et al: ‘Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps’, IEEE Trans. Neural Netw., 1992, 3, (5), pp. 698713.
    7. 7)
      • 13. Batista, O.E., Flauzino, R.A., Araujo, M.A., et al: ‘Methodology for information extraction from oscillograms and its application for high-impedance faults analysis’, Int. J. Electr. Power Energy Syst., 2016, 76, (3), pp. 2334.
    8. 8)
      • 27. Santoso, S., Powers, E.J., Grady, W.M., et al: ‘Power quality disturbance waveform recognition using wavelet-based neural classifier – part 1: theoretical foundation’, IEEE Trans. Power Deliv., 2000, 15, (1), pp. 222228.
    9. 9)
      • 32. Zadeh, L.A.: ‘Fuzzy sets’, Inf. Control, 1965, 8, pp. 338353.
    10. 10)
      • 14. Costa, F.B., Souza, B.A., Brito, N.S.D., et al: ‘Real-time detection of transients induced by high-impedance faults based on the boundary wavelet transform’, IEEE Trans. Ind. Appl., 2015, 51, (6), pp. 53125323.
    11. 11)
      • 7. Samantaray, S.R., Dash, P.K., Upadhyay, S.K.: ‘Adaptive Kalman filter and neural network based high impedance fault detection in power distribution networks’, Int. J. Electr. Power Energy Syst., 2009, 31, (4), pp. 167172.
    12. 12)
      • 1. Das, R., Madani, V., Aminifar, F., et al: ‘Distribution automation strategies: evolution of technologies and the business case’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 21662175.
    13. 13)
      • 9. Gautam, S., Brahma, S.M.: ‘Detection of high impedance fault in power distribution systems using mathematical morphology’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 12261234.
    14. 14)
      • 11. Ghaderi, A., Mohammadpour, H.A., Ginn, H.L., et al: ‘High-impedance fault detection in the distribution network using the time-frequency-based algorithm’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 12601268.
    15. 15)
      • 8. Samantaray, S.R.: ‘Ensemble decision trees for high impedance fault detection in power distribution network’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 10481055.
    16. 16)
      • 6. Tcheou, M.P., Lovisolo, L., Ribeiro, M.V., et al: ‘The compression of electric signal waveforms for smart grids: state of the art and future trends’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 291302.
    17. 17)
      • 17. Daubechies, I.: ‘Ten lectures on wavelets’ (Society for Industrial and Applied Mathematics, 1992, 1st edn.).
    18. 18)
      • 30. IEEE Power Engineering Society: ‘IEEE 123 node test feeder’, Distribution System Analysis Subcommittee, 2013. Available at: http://ewh.ieee.org/soc/pes/dsacom/testfeeders/feeder123.zip.
    19. 19)
      • 21. Chen, W.H., Liu, C.W., Tsai, M.S.: ‘On-line fault diagnosis of distribution substations using hybrid cause-effect network and fuzzy rule-based method’, IEEE Trans. Power Deliv., 2000, 15, (2), pp. 710717.
    20. 20)
      • 15. Oppenheim, A.V., Schafer, R.W.: ‘Digital signal processing’ (Prentice-Hall, 1975, US edn.).
    21. 21)
      • 28. Buchanan, B.G., Shortliffe, E.D.: ‘Rule-based expert systems: the MYCIN experiments of the Stanford heuristic programming project’ (Addison-Wesley, 1984).
    22. 22)
      • 16. Mallat, S.: ‘A wavelet tour of signal processing: the sparse way’ (Academic Press, 2009, 3rd edn.).
    23. 23)
      • 4. Lo, C.H., Ansari, N.: ‘Decentralized controls and communications for autonomous distribution networks in smart grid’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 6677.
    24. 24)
      • 24. Decanini, J.G.M.S., Tonelli-Neto, M.S., Malange, F.C.V., et al: ‘Detection and classification of voltage disturbances using a fuzzy-ARTMAP-wavelet network’, Electr. Power Syst. Res. , 2011, 81, (12), pp. 20572065.
    25. 25)
      • 3. Kim, M., Metzner, J.J.: ‘A key exchange method for intelligent electronic devices in distribution automation’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 14581464.
    26. 26)
      • 25. Shafer, G.: ‘A mathematical theory of evidence’ (Princeton University Press, 1976, 1st edn.).
    27. 27)
      • 2. Madani, V., Das, R., Aminifar, F., et al: ‘Distribution automation strategies challenges and opportunities in a changing landscape’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 21572165.
    28. 28)
      • 18. Decanini, J.G.M.S., Tonelli-Neto, M.S., Minussi, C.R.: ‘Robust fault diagnosis in power distribution systems based on fuzzy ARTMAP neural network-aided evidence theory’, IET Gener. Transm. Distrib., 2012, 6, (11), pp. 11121120.
    29. 29)
      • 26. Barnett, J.A.: ‘Computational methods for a mathematical theory of evidence’, Classic Works of the Dempster-Shafer Theory of Belief Functions, 2008, 219, pp. 197216.
    30. 30)
      • 29. Battiti, R., Colla, A.M.: ‘Democracy in neural nets: voting schemes for classification’, Neural Netw., 1994, 7, (4), pp. 691707.
    31. 31)
      • 5. Macedo, M.N.Q., Galo, J.J.M., Almeida, L.A.L., et al: ‘Methodology for the calculation of the factor of priority for smart grid implantation using fuzzy logic’, Int. J. Electr. Power Energy Syst., 2016, 78, (6), pp. 563568.
    32. 32)
      • 12. Macedo, J.R., Resende, J.W., Bissochi, C.A., et al: ‘Proposition of an interharmonic-based methodology for high-impedance fault detection in distribution systems’, IET Gener. Transm. Distrib., 2015, 9, (16), pp. 25932601.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1409
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1409
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading