Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Single-phase solar grid-interfaced system with active filtering using adaptive linear combiner filter-based control scheme

This study deals with a control scheme for single-stage solar photovoltaic (SPV) grid-interfaced system. The voltage-source inverter (VSI) is a power electronic interface between SPV array and the grid. The VSI provides power quality features, i.e. harmonics mitigation, power factor correction and perturb and observe maximum power point tracking for single-stage SPV grid-interfaced system. The SPV array supplies active power to the non-linear load and grid through VSI, during daytime only or when SPV generation is more than the load power. To increase the utilisation of VSI, it is used as an active power filter at night, to mitigate harmonics and to provide active power to the load from the utility grid. The proposed adaptive linear combiner filter has the capability to extract harmonics and enhances the power quality in SPV grid-interfaced system. It has also satisfied an IEEE-519 standard of harmonics by improving the quality of power of SPV grid-integrated system. Simulation results of the SPV system are presented, which are simulated using MATLAB and response of system under non-linear load and varying environmental condition are also studied experimentally on a developed prototype in the laboratory.

References

    1. 1)
      • 10. Lal, V.N., Singh, S.N.: ‘Modified particle swarm optimization-based maximum power point tracking controller for single-stage utility-scale photovoltaic system with reactive power injection capability’, IET Renew. Power Gener., 2016, 10, (7), pp. 899907.
    2. 2)
      • 19. Agarwal, R., Hussain, I., Singh, B.: ‘LMF based control algorithm for single-stage three-phase grid integrated solar PV system’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 13791387.
    3. 3)
      • 12. Sun, Y., Liu, Y., Su, M., et al: ‘Review of active power decoupling topologies in single-phase systems’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 47784794.
    4. 4)
      • 5. Dinh, N.D., Tuyen, N.D., Fujita, G., et al: ‘Adaptive notch filter solution under unbalanced and/or distorted point of common coupling voltage for three-phase four-wire shunt active power filter with sinusoidal utility current strategy’, IET Gener. Trans. Distrib., 2015, 9, (13), pp. 15801596.
    5. 5)
      • 8. Subudhi, B., Pradhan, R.: ‘A comparative study on maximum power point tracking techniques for photovoltaic power systems’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 8998.
    6. 6)
      • 15. Kabiri, R., Holmes, D.G., McGrath, B.P., et al: ‘LV grid voltage regulation using transformer electronic tap changing, with PV inverter reactive power injection’, IEEE J. Emerging Sel. Top. Power Electron., 2015, 3, (4), pp. 11821192.
    7. 7)
      • 18. Acuna, P., Aguilera, R.P., Ghias, A.M.Y.M., et al: ‘Cascade-free model predictive control for single-phase grid-connected power converters’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 285294.
    8. 8)
      • 27. IEEE recommended practices and requirement for harmonic control on electric power system, IEEE Std. 519, 1992.
    9. 9)
      • 25. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Modeling and circuit-based simulation of photovoltaic arrays’. Proc. Brazilian Power Electronics Conf., Bonito-MatoGrosso do Sul, 27 September−12 October 2009, pp. 12441254.
    10. 10)
      • 16. Alajmi, B.N., Ahmed, K.H., Adam, G.P., et al: ‘Single-phase single-stage transformer less grid-connected PV system’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 26642676.
    11. 11)
      • 4. Jain, C., , Singh, B.: ‘Single-phase single-stage multifunctional grid interfaced solar photo-voltaic system under abnormal grid conditions’, IET Gener. Trans. Distrib., 2015, 9, (10), pp. 886894.
    12. 12)
      • 24. Chilipi, R.R., Al Sayari, N., Beig, A.R., et al: ‘A multitasking control algorithm for grid-connected inverters in distributed generation applications using adaptive noise cancellation filters’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 714727.
    13. 13)
      • 17. Verma, A.K., Singh, B., Shahani, D.T.: ‘Grid interfaced solar photovoltaic power generating system with power quality improvement at AC mains’. Proc. IEEE Third Int. Conf. Sustainable Energy Technologies (ICSET), Kathmandu, 2012, pp. 177182.
    14. 14)
      • 1. Adefarati, T., Bansal, R.C.: ‘Integration of renewable distributed generators into the distribution system: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 873884.
    15. 15)
      • 20. Mirhosseini, M., Pou, J., Karanayil, B., et al: ‘Resonant versus conventional controllers in grid-connected photovoltaic power plants under unbalanced grid voltages’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 11241132.
    16. 16)
      • 14. Wu, T.F., Chang, C.H., Lin, L.C., et al: ‘Power loss comparison of single- and two-stage grid-connected photovoltaic systems’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 707715.
    17. 17)
      • 2. Vithayasrichareon, P., MacGill, I.F.: ‘Valuing large-scale solar photovoltaics in future electricity generation portfolios and its implications for energy and climate policies’, IET Renew. Power Gener., 2016, 10, (1), pp. 7987.
    18. 18)
      • 3. Ghosh, S., Rahman, S., Pipattanasomporn, M.: ‘Distribution voltage regulation through active power curtailment with PV inverters and solar generation forecasts’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 1322.
    19. 19)
      • 7. Wu, T.-F., Nien, H.-S., Shen, C.-L., et al: ‘A single-phase inverter system for PV power injection and active power filtering with nonlinear inductor consideration’, IEEE Trans. Ind. Appl., 2005, 41, (4), pp. 10751083.
    20. 20)
      • 9. Mohamed, A.A.S., Berzoy, A., Mohammed, O.: ‘Design and hardware implementation of FL MPPT control for PV systems based on GA and small-signal analysis’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 279290.
    21. 21)
      • 23. Barros, J., Perez, E.: ‘An adaptive method for determining the reference compensating current in single-phase shunt active power filters’, IEEE Trans. Power Deliv., 2003, 18, (4), pp. 15781580.
    22. 22)
      • 26. Singh, B., Chandra, A., Al-Haddad, K.: ‘Power quality: problems and mitigation techniques’ (John Wiley & Sons Ltd., UK, 2015).
    23. 23)
      • 13. Fahmy, A.M., Ahmed, K.H., Hamad, M.S., et al: ‘Single-phase grid connected distributed generation interfacing converter with power quality improvement capability’. Proc. 39th Annual Conf. of the IEEE Industrial Electronics Society (IECON), Vienna, 10–13 November 2013, pp. 21692174.
    24. 24)
      • 22. Cupertino, F., Marinelli, M., Salvatore, L.: ‘EKF- and wavelet-based algorithms applied to harmonic detection for active shunt filters’. Proc. 11th Int. Conf. on Harmonics and Quality of Power, 2004, pp. 721727.
    25. 25)
      • 6. Bojoi, R.I., Limongi, L.R., Roiu, D., et al: ‘Enhanced power quality control strategy for single-phase inverters in distributed generation systems’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 798806.
    26. 26)
      • 11. Kjaer, S.B., Pedersen, J.K., Blaabjerg, F.: ‘A review of single-phase grid-connected inverters for photovoltaic modules’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12921306.
    27. 27)
      • 21. Singh, B., Jain, C., Goel, S., et al: ‘A multifunctional grid-tied solar energy conversion system with ANF-based control approach’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 36633672.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1392
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1392
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address