access icon free MPC-based microgrid control with supplementary fault current limitation and smooth transition mechanisms

This study presents a control strategy for a microgrid that consists of multiple distributed generators (DGs), for both grid-connected and islanded modes of operation, where every DG is interfaced to the main grid via a voltage sourced inverter (VSI). finite control set model predictive control (FCS-MPC) is used as the primary controller to regulate the output power of each DG (in the grid-connected mode) or the voltage of the point of DG coupling (in the islanded mode of operation). In the grid-connected mode, direct power model predictive control (DPMPC) is implemented to manage the power flow between each DG and the main grid. In the islanded mode, voltage model predictive control (VMPC), as the primary control, and droop control, as the secondary control, are employed to control the output voltage of each DG and system frequency. The controller is equipped with a supplementary current limiting technique to limit the output current of each DG in case of overcurrent scenarios. The control approach also enables a smooth transition between the two modes. The performance of the control strategy is investigated and verified using PSCAD/EMTDC software platform.

Inspec keywords: predictive control; fault currents; invertors; power control; power generation control; distributed power generation; controllers

Other keywords: grid-connected mode; smooth transition mechanisms; voltage sourced inverter; distributed generators; islanded modes; power regulation; MPC-based microgrid control; finite control set model predictive control; controller; droop control; PSCAD/EMTDC software platform; control strategy; fault current limitation; direct power model predictive control

Subjects: DC-AC power convertors (invertors); Optimal control; Control of electric power systems; Controllers; Distributed power generation; Power and energy control

References

    1. 1)
      • 21. Cortes, P., Rodriguez, J., Silva, C., et al: ‘Delay compensation in model predictive current control of a three-phase inverter’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 13231325.
    2. 2)
      • 11. Li, Y., Vilathgamuwa, D., Loh, P.: ‘Design, analysis, and real-time testing of a controller for multibus microgrid system’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11951204.
    3. 3)
      • 22. Rodríguez, P.J., Estay, P.C.: ‘Predictive control of power converters and electrical drives’ (Wiley, IEEE Press, 2012, 1st edn.), pp. 145161.
    4. 4)
      • 2. Yu, F., Zhang, P., Xiao, W., et al: ‘Communication systems for grid integration of renewable energy resources’, IEEE Netw., 2011, 25, (5), pp. 2229.
    5. 5)
      • 25. Mohamed, Y., El-Saadany, E.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816.
    6. 6)
      • 29. Bloemink, J.M., Iravani, M.R.: ‘Control of a multiple source microgrid with built-in islanding detection and current limiting’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 21222132.
    7. 7)
      • 4. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    8. 8)
      • 16. Hu, J., Zhu, J., Dorrell, D.G., et al: ‘Virtual flux droop method—a new control strategy of inverters in microgrids’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 47044711.
    9. 9)
      • 17. Rodriguez, J., Kazmierkowski, M.P., Espinoza, J.R., et al: ‘State of the art of finite control set model predictive control in power electronics’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 10031016.
    10. 10)
      • 12. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    11. 11)
      • 10. Kouro, S., Cortes, P., Vargas, R., et al: ‘Model predictive control—a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18261838.
    12. 12)
      • 7. Xu, Y., Li, F.: ‘Adaptive PI Control of STATCOM for voltage regulation’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 10021011.
    13. 13)
      • 23. Yazdanian, M., Mehrizi-Sani, A.: ‘Distributed control techniques in microgrids’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 29012909.
    14. 14)
      • 14. Vasquez, J., Mastromauro, R., Guerrero, J., et al: ‘Voltage Support Provided by a Droop-Controlled Multifunctional Inverter’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 45104519.
    15. 15)
      • 3. Lasseter, R., Paigi, P.: ‘Microgrid: a conceptual solution’. IEEE 35th Annual Power Electronics Specialists Conf., 2004, pp. 42854290.
    16. 16)
      • 19. Broeck, H.V.D., Skudelny, H.-C., Stanke, G.: ‘Analysis and realization of a pulsewidth modulator based on voltage space vectors’, IEEE Trans. Ind. Appl., 1988, 24, (1), pp. 142150.
    17. 17)
      • 1. Bull, S.: ‘Renewable energy today and tomorrow’, Proc. IEEE, 2001, 89, (8), pp. 12161226.
    18. 18)
      • 28. Meng, W., Wang, X., Liu, S.: ‘Distributed load sharing of an inverter-based microgrid with reduced communication’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 11.
    19. 19)
      • 27. Ahmed, K., Finney, S., Williams, B.: ‘Passive filter design for three-phase inverter interfacing in distributed generation’, 2007 Compat. Power Electron., 2007, 13, (2), pp. 19.
    20. 20)
      • 24. Sao, C., Lehn, P.: ‘Autonomous load sharing of voltage source converters’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 10091016.
    21. 21)
      • 9. Cortes, P., Rodriguez, J., Quevedo, D.E., et al: ‘Predictive current control strategy with imposed load current spectrum’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 612618.
    22. 22)
      • 6. Twining, E., Holmes, D.: ‘Grid current regulation of a three-phase voltage source inverter with an LCL input filter’, IEEE Trans. Power Electron., 2003, 18, (3), pp. 888895.
    23. 23)
      • 13. Yao, W., Chen, M., Matas, J., et al: ‘Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 576588.
    24. 24)
      • 5. Schauder, C., Mehta, H.: ‘Vector analysis and control of advanced static VAR compensators’, IEE Proc. C Gener. Transm. Distrib., 1993, 140, (4), pp. 299306.
    25. 25)
      • 26. Arafat, M.N., Elrayyah, A., Sozer, Y.: ‘An effective smooth transition control strategy using droop-based synchronization for parallel inverters’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 24432454.
    26. 26)
      • 8. Rodrigue, J., Pontt, J., Silva, C., et al: ‘Predictive current control of a voltage source inverter’. IEEE 35th Annual Power Electronics Specialists Conf., 2004, pp. 21922196.
    27. 27)
      • 18. Vazquez, S., Leon, J., Franquelo, L., et al: ‘Comparison between FS-MPC control strategy for an UPS inverter application in α β and abc frames’. IEEE Int. Symp. on Industrial Electronics, 2010, pp. 31333138.
    28. 28)
      • 15. Lee, C.-T., Chu, C.-C., Cheng, P.-T.: ‘A new droop control method for the autonomous operation of distributed energy resource interface converters’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 19801993.
    29. 29)
      • 20. Hu, J., Zhu, J., Dorrell, D.G.: ‘Model predictive control of inverters for both islanded and grid-connected operations in renewable power generations’, IET Renew. Power Gener., 2014, 8, (3), pp. 240248.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1387
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1387
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading