Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Normalised normal constraint algorithm applied to multi-objective security-constrained optimal generation dispatch of large-scale power systems with wind farms and pumped-storage hydroelectric stations

A multi-objective security-constrained optimal generation dispatch (MOSCOGD) model for large-scale power systems with wind farms and pumped-storage hydroelectric (PSH) stations is proposed. In this model, fuel consumption, emission content of atmospheric pollutants, and power purchase costs are taken into account as objective functions, and network security under basic status and N − 1 criterion conditions, and the operational limits of PSH resources are included in the constraints. The difficulties associated with discrete variables for describing the operational characteristics of PSH resources are avoided by introducing two continuous variables, generation power and pumping power, which satisfy complementary constraints. The normalised normal constraint algorithm is used to transform the three-objective optimal dispatch model into a series of single-objective optimisation models, which are solved by the interior point method, resulting in a series of evenly distributed Pareto optimal solutions (POSs) and the complete Pareto frontier surface. The computational efficiency is greatly enhanced by employing a checking–adding–checking again-adding again scheme to address network security constraints. Moreover, parallel computing is employed to improve the computation speed for solving the POSs of the MOSCOGD model. Test results on an actual large-scale power system and the modified IEEE 39-bus system demonstrate the effectiveness of the proposed method.

References

    1. 1)
      • 20. Fu, Y., Shahidehpour, M.: ‘Fast SCUC for large-scale power systems’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 21442151.
    2. 2)
      • 12. Nezhad, A.E., Javadi, M.S., Rahimi, E.: ‘Applying augmented ε-constraint approach and lexicographic optimization to solve multi-objective hydrothermal generation scheduling considering the impacts of pumped-storage units’, Int. J. Electr. Power Energy Syst., 2014, 55, pp. 195204.
    3. 3)
      • 7. Khodayar, M.E., Abreu, L., Shahidehpour, M.: ‘Transmission-constrained intrahour coordination of wind and pumped-storage hydro units’, IET Gener. Trans. Distrib., 2013, 7, (7), pp. 755765.
    4. 4)
      • 9. Dhanalakshmi, S., Kannan, S., Mahadevan, K., et al: ‘Application of modified NSGA-II algorithm to combined economic and emission dispatch problem’, Int. J. Electr. Power Energy Syst., 2011, 33, pp. 9921002.
    5. 5)
      • 24. Liu, M.B., Tso, S.K., Cheng, Y.: ‘An extended nonlinear primal-dual interior-point algorithm for reactive-power optimization of large-scale power systems with discrete control variables’, IEEE Trans. Power Syst., 2002, 17, (4), pp. 982991.
    6. 6)
      • 1. Chakraborty, S., Senjyu, T., Yona, A., et al: ‘Solving economic load dispatch problem with valve-point effects using a hybrid quantum mechanics inspired particle swarm optimisation’, IET Gener. Trans. Distrib., 2011, 5, (10), pp. 10421052.
    7. 7)
      • 18. Wu, W.C., Chen, J.H., Zhang, B.M., et al: ‘A robust wind power optimization method for look-ahead dispatch’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 507515.
    8. 8)
      • 4. Ela, E., O'Malley, M.: ‘Studying the variability and uncertainty impacts of variable generation at multiple timescales’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 13241333.
    9. 9)
      • 8. Khodayar, M.E., Shahidehpour, M., Wu, L.: ‘Enhancing the dispatchability of variable wind generation by coordination with pumped-storage hydro units in stochastic power systems’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 28082818.
    10. 10)
      • 17. Li, Z.G., Wu, W.C., Zhang, B.M., et al: ‘Dynamic economic dispatch using Lagrangian relaxation with multiplier updates based on a quasi-Newton method’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 45164527.
    11. 11)
      • 5. Ghofrani, M., Arabali, A., Etezadi-Amoli, M., et al: ‘Energy storage application for performance enhancement of wind integration’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 48034811.
    12. 12)
      • 14. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: ‘The normalized normal constraint method for generating the Pareto frontier’, Struct. Multidisc. Optim., 2003, 25, (2), pp. 8698.
    13. 13)
      • 23. Lee, T.Y.: ‘Optimal spinning reserve for a wind-thermal power system using EIPSO’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 16121621.
    14. 14)
      • 13. Das, I., Dennis, J.E.: ‘Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems’, SIAM J. Optim., 1998, 8, (3), pp. 631657.
    15. 15)
      • 22. Scott, B., Jorge, J., Ongun, A.: ‘DC power flow revisited’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 12901300.
    16. 16)
      • 25. Tan, S.W., Lin, S.J., Yang, L.Q., et al: ‘Multi-objective optimal power flow model for power system operation dispatching’. APPEEC, Hong Kong, China, December 2013, pp. 16.
    17. 17)
      • 15. Roman, C., Rosehart, W.: ‘Evenly distributed Pareto points in multi-objective optimal power flow’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 10111012.
    18. 18)
      • 16. Li, Q., Liu, M.B., Liu, H.Y.: ‘Piecewise normalized normal constraint method applied to minimization of voltage deviation and active power loss in an AC–DC hybrid power system’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 12431251.
    19. 19)
      • 6. Lu, M.S., Chang, C.L., Lee, W.J., et al: ‘Combining the wind power generation system with energy storage equipment’, IEEE Trans. Ind. Appl., 2009, 45, (6), pp. 21092115.
    20. 20)
      • 2. Niknam, T., Azizipanah-Abarghooee, R., Aghaei, J.: ‘A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 749763.
    21. 21)
      • 11. Milano, F., Cañizares, C.A., Invernizzi, M.: ‘Multiobjective optimization for pricing system security in electricity markets’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 596604.
    22. 22)
      • 21. Zhong, H.W., Xia, Q., Wang, Y., et al: ‘Dynamic economic dispatch considering transmission losses using quadratically constrained quadratic program method’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 22322241.
    23. 23)
      • 19. Hedman, K.W., Ferris, M.C., O'Neill, R.P., et al: ‘Co-optimization of generation unit commitment and transmission switching with N − 1 reliability’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 10521063.
    24. 24)
      • 3. Ummels, B.C., Madeleine, G., Engbert, P.: ‘Impacts of wind power on thermal generation unit commitment and dispatch’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 4451.
    25. 25)
      • 10. Wu, L.H., Wang, Y.N., Yuan, X.F., et al: ‘Environmental/economic power dispatch problem using multi-objective differential evolution algorithm’, Electr. Power Syst. Res., 2010, 80, (9), pp. 11711181.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1386
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1386
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address