access icon free Interfacing technique and hardware-in-loop simulation of real-time co-simulation platform for wind energy conversion system

The wind energy conversion system is a complex dynamic system which contains multi-coupling and multi-time-scales. The commonly used simplified models are unable to uncover all the detailed dynamics. The real-time co-simulation platform based on real-time digital simulator and GH Bladed is built with a controller hardware-in-loop, in which the kinematics equation of generator rotor is used as the interface to decouple the different time scales, and a specific programmable logic controller is used to build the two-way communication. The effect of signal delay between the two simulation platforms is discussed and the stability of the system is analysed. The proposed co-simulation platform is able to show detailed dynamics of the whole turbine as well as the comprehensive effects of the controllers. The correctness and superiorities are verified by number of simulations.

Inspec keywords: power engineering computing; wind power; wind turbines; programmable controllers; wind power plants; rotors; hardware-in-the loop simulation

Other keywords: wind energy conversion system; signal delay; real-time co-simulation platform; programmable logic controller; two-way communication; generator rotor; interfacing technique; hardware-in-loop simulation

Subjects: Wind energy; Wind power plants; Power engineering computing; Control engineering computing; Programmable controllers

References

    1. 1)
      • 20. Jankovic, Z., Novakovic, B., Bhavaraju, V., et al: ‘Average modeling of a three-phase inverter for integration in a microgrid’, IEEE Energy Convers. Congr. Exposition, Pittsburgh, PA, USA, September, 2014, pp. 793799.
    2. 2)
      • 31. Ren, W., Steurer, M., Baldwin, T.L.: ‘An effective method for evaluating the accuracy of power hardware-in-the-loop simulations’, IEEE Trans. Ind. Appl., 2009, 45, (4), pp. 14841491.
    3. 3)
      • 17. Muyeen, S.M.: ‘Comparative study on transient stability analysis of wind turbine generator system using different drive train models’, IET Renew. Power Gener., 2007, 1, (2), pp. 131141.
    4. 4)
      • 21. Singh, M., Muljadi, E., Jonkman, J., et al: ‘Simulation for wind turbine generators -- with FAST and MATLAB-simulink modules’, Technical Report, National Renewable Energy Laboratory, NREL/TP-5D00-59195, 2014, Available at: http://www.nrel.gov/docs/fy14osti/59195.pdf.
    5. 5)
      • 23. Alvarez, C., et al: ‘Custom power systems and software platforms for wind farms under voltage dips situations’. Universities Power Engineering Conf., 2008. Upec 2008. Int., 2008, pp. 14.
    6. 6)
      • 5. Dolan, D.S.L., Lehn, P.W.: ‘Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow’, IEEE Trans. Energy Convers., 2006, 21.3, pp. 717724.
    7. 7)
      • 10. Ramtharan, G., Jenkins, N., Anaya-Lara, O., et al: ‘Influence of rotor structural dynamics representations on the electrical transient performance of FSIG and DFIG wind turbines’, Wind Energy, 2007, 10.4, pp. 293301.
    8. 8)
      • 19. Lei, Y., Mullane, A., Lightbody, G., et al: ‘Modeling of the wind turbine with a doubly fed induction generator for grid integration studies’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 257264.
    9. 9)
      • 26. Lin, H., Veda, S.S., Shukla, S.S., et al: ‘GECO: global event-driven co-simulation framework for interconnected power system and communication network’, IEEE Trans. Smart Grid, 2012, 3.3, pp. 14441456.
    10. 10)
      • 13. Slootweg, J.G., De Haan, S.W.H., Polinder, H., et al: ‘General model for representing variable speed wind turbines in power system dynamics simulations’, IEEE Power Eng. Rev., 2002, 18.11, pp. 5656.
    11. 11)
      • 27. Zhang, H., Li, R., Song, Y., et al: ‘Research on the interface algorithm of power system electromechanical-electromagnetic hybrid simulation’. Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies IEEE, 2015.
    12. 12)
      • 1. Konstantopoulos, G.C., Alexandridis, A.T.: ‘Full-scale modeling, control, and analysis of grid-connected wind turbine induction generators with back-to-back AC/DC/AC converters’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2.4, pp. 739748.
    13. 13)
      • 6. Trilla, L., Gomis-Bellmunt, O., Junyent-Ferre, A., et al: ‘Modeling and validation of DFIG 3-MW wind turbine using field test data of balanced and unbalanced voltage sags’, IEEE Trans. Sustain. Energy, 2011, 2.4, pp. 509519.
    14. 14)
      • 29. Rawn, B.G., Lehn, P.W., Maggiore, M.: ‘Control methodology to mitigate the grid impact of wind turbines’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 431438.
    15. 15)
      • 16. Yenduri, K., Sensarma, P.: ‘Maximum power point tracking of variable speed wind turbines with flexible shaft’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 956965.
    16. 16)
      • 14. Mohammadpour, H.A., Ghaderi, A., Santi, E.: ‘Analysis of sub-synchronous resonance in doubly-fed induction generator-based wind farms interfaced with gate-controlled series capacitor’, IET Gener. Transm. Distrib., 2014, 8.12, pp. 19982011.
    17. 17)
      • 7. Licari, J., Ekanayake, J.B., Jenkins, N.: ‘Investigation of a speed exclusion zone to prevent tower resonance in variable-speed wind turbines’, IEEE Trans. Sustain. Energy, 2013, 4.4, pp. 977984.
    18. 18)
      • 11. Jonkman, J.M., Buhl, M.L.J.: ‘National renewable energy laboratory (NREL)’. Golden, CO, Technical Report NREL/EL-500–38230, 2005, Aug. FAST User'S Guide., Available at: http://wind.nrel.gov/designcodes/simulators/fast/.
    19. 19)
      • 15. Zhu, R., Chen, Z., Wu, X., et al: ‘Virtual damping flux-based LVRT control for DFIG-based wind turbine’, IEEE Trans. Energy Convers., 2015, 30.2, pp. 112.
    20. 20)
      • 4. Nichita, C., et al: ‘Large band simulation of the wind speed for real time wind turbine simulators’, IEEE Trans. Energy Convers., 2002, 17.4, pp. 523529.
    21. 21)
      • 12. Fadaeinedjad, R., Moallem, M., Moschopoulos, G.: ‘Simulation of a wind turbine with doubly fed induction generator by FAST and simulink’, IEEE Trans. Energy Convers., 2008, 23.2, pp. 690700.
    22. 22)
      • 25. Power hardware in the loop’: https://www.rtds.com/applications/power-hardware-in-the-loop/, accessed 18 August2016.
    23. 23)
      • 9. Bossanyi, E.A.: ‘GH Bladed theory manual’ (GH & Partners Ltd, Glasgow, UK, 2003).
    24. 24)
      • 3. Bianchi, F.D., Battista, H., Mantz, R.J.: ‘Wind turbine control systems: principles, modeling and gain scheduling design’ (Springer, New York, NY, USA, 2007).
    25. 25)
      • 30. Tian, F., Li, R., Song, Y., et al: ‘Realization of electromechanical transient and electromagnetic transient real time hybrid simulation in power system’. Transmission and Distribution Conf. and Exhibition: Asia and Pacific, 2005 IEEE/PES, 2005, pp. 16.
    26. 26)
      • 18. Ekanayake, J.B., Holdsworth, L., Jenkins, N.: ‘Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines’, Electr. Power Syst. Res., 2003, 67, pp. 207215.
    27. 27)
      • 8. Schreck, S.J., Robinson, M.C.: ‘Horizontal axis wind turbine blade aerodynamics in experiments and modeling’, IEEE Trans. Energy Convers., 2007, 22.1, pp. 6170.
    28. 28)
      • 28. Hassan, K.K.: ‘Nonlinear systems’ (Prentice Hall, New Jersey, USA, 2002, 3rd edn.), pp. 430438.
    29. 29)
      • 22. Mata-Dumenjo, M., Sanchez-Navarro, J., Rossetti, M., et al: ‘Integrated simulation of a doubly fed induction generator wind turbine’. European Conf. on Power Electronics and Applications, 2009, pp. 17.
    30. 30)
      • 24. Hardy, T., Jewell, W.: ‘Hardware-in-the-loop wind turbine simulation platform for a laboratory feeder model’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 10031010.
    31. 31)
      • 2. Novakovic, B., Duan, Y., Solveson, M.G., et al: ‘From wind to the electric grid: comprehensive modeling of wind turbine systems’, IEEE Ind. Appl. Mag., 2016, 22, (5), pp. 7384.
    32. 32)
      • 32. Bossanyi, E.A.: ‘The design of closed loop controllers for wind turbines’, Wind Energy, 2000, 3.3, pp. 149163.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1371
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1371
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading