access icon free Non-linear fuzzy predictive control of hydroelectric system

This study brings out a brand new non-linear predictive control method, a fuzzy generalised predictive control, for hydroelectric plant systems. Takagi–Sugeno (T–S) fuzzy method and generalised predictive control are implemented in the non-linear control method. The basic concept of the method is generalised predictive control, which is a linear system based method. However, the authors novelty adopt fuzzy model, especially the T–S model, as the prediction model to broaden the applications of the predictive control to non-linear range. Therefore, the proposed method inherits the advantages of generalised predictive control, but it can also effectively control a complex non-linear system. Its effectiveness and efficiency are verified by Lyapunov stability theory. Applying the control method on the non-linear hydroelectric system, the different experiments show that this control method succeeds in maintaining the hydroelectric system stable. Those experimental results accord with theoretic analysis. Thus, the proposed control method enjoys the capacity to govern a non-linear system. A comparison experiment between the proposed method and PID method illustrates the advantages of the authors’ method, which are its smooth treatment, less overshoot and fast to be stable of response. In addition, discussions about the tuning control parameters facilitate the usages of the proposed method.

Inspec keywords: nonlinear control systems; Lyapunov methods; predictive control; three-term control; hydroelectric power stations; fuzzy control; linear systems; power generation control

Other keywords: complex nonlinear system; Lyapunov stability theory; linear system based method; hydroelectric system nonlinear fuzzy predictive control; Takagi–Sugeno fuzzy method; control parameter tuning; T-S fuzzy method; hydroelectric plant system; fuzzy generalised predictive control; PID method

Subjects: Nonlinear control systems; Optimal control; Hydroelectric power stations and plants; Control of electric power systems; Linear control systems; Fuzzy control; Stability in control theory

References

    1. 1)
      • 15. Matthew, K., Petros, I.: ‘Multiple model adaptive control with mixing’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 1821836.
    2. 2)
      • 17. Kurniawan, E., Cao, Z.W., Man, Z.H.: ‘Digital design of adaptive repetitive control of linear systems with time-varying periodic disturbances’, IET Control Theory Appl., 2014, 8, (17), pp. 19952003.
    3. 3)
      • 11. Ding, X.B., Alok, S.: ‘Hydropower plant frequency control via feedback linearization and sliding mode control’. ASME Dynamic Systems and Control Conf./Bath/ASME Symp. on Fluid Power and Motion Control, Arlington, Virginia, USA, October 2011.
    4. 4)
      • 33. Grüne, L., Pannek, J.: ‘Nonlinear Model Predictive Control, Communications and Control Engineering’ (Springer-Verlag, London, 2011, 1st edn.).
    5. 5)
      • 34. Kemih, K., Tekkouk, O., Filali, S.: ‘Constrained generalised predictive control with estimation by genetic algorithm for a magnetic levitation system’, Int. J. Innov. Comput. Inf. Control, 2006, 2, (3), pp. 543552.
    6. 6)
      • 35. Zhang, Y.J., Chai, T.Y., Wang, H.: ‘An adaptive generalized predictive control method for nonlinear systems based on ANFIS and multiple models’, IEEE Trans. Fuzzy Syst., 2010, 18, (6), pp. 10701082.
    7. 7)
      • 27. Imura, A., Takahashi, T., Fujitsuna, M.: ‘Improved PMSM model considering flux characteristics for model predictive-based current control’, IEEJ Trans. Electr. Electron. Eng., 2015, 10, (1), pp. 92100.
    8. 8)
      • 47. Zhang, R.F., Chen, D.Y., Ma, X.Y.: ‘Nonlinear predictive control of a hydropower system model’, Entropy, 2015, 17, (9), pp. 61296149.
    9. 9)
      • 16. Norton, M., Khoo, S., Kouzani, A., et al: ‘Adaptive fuzzy multi-surface sliding control of multiple-input and multiple-output autonomous flight systems’, IET Control Theory Appl., 2015, 9, (4), pp. 587597.
    10. 10)
      • 9. Zambelli, M.S., Lopes, M.S., Soares, S.: ‘Long-term hydropower scheduling using model predictive control approach with hybrid Monthly-Annual inflow forecasting’. 6th IEEE/PES Transmission and Distribution – Latin America Conf. and Exposition (TandD-LA), Montevideo, September 2012.
    11. 11)
      • 36. Kouvaritakis, B., Rossiter, J.A., Gossner, J.R.: ‘Improved algorithm for multivariable stable GPC’, IEE Proc. D Control Theory Appl., 1997, 144, (4), pp. 309312.
    12. 12)
      • 43. Rossiter, J.A., Gossner, J.R., Kouvaritakis, B.: ‘Infinite horizon stable predictive control’, IEEE Trans. Autom. Control, 1996, 41, (10), pp. 15221527.
    13. 13)
      • 5. Chen, Z.H., Yuan, X.H., Ji, B., et al: ‘Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II’, Energy Convers. Manage., 2014, 84, pp. 390404.
    14. 14)
      • 30. Aydiner, E., Brunner, F.D., Heemels, W.P.M.H., et al: ‘Robust self-triggered model predictive control for constrained discrete-time LTI systems based on homothetic tubes’. Proc. European Control Conf. (ECC), Linz, Austria, 2015, pp. 15811587.
    15. 15)
      • 20. Liu, Y., Ban, X.J., Wu, F., et al: ‘A gain-scheduling control for T–S fuzzy systems based on linear parameter-varying control theory’, J. Dyn. Syst. Meas. Control, 2015, 138, (1), p. 011008.
    16. 16)
      • 3. Hennig, T., Wang, W.L., Feng, Y., et al: ‘Review of Yunnan's hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences’, Renew. Sustain. Energy Rev., 2013, 27, pp. 585595.
    17. 17)
      • 45. Shen, Z.Y.: ‘Hydraulic Turbine Reglation’ (China Water Press, Beijing, 1998, 3th edn., in Chinese).
    18. 18)
      • 37. Rossiter, J.A., Grinnell, B.G.: ‘Improving the tracking of GPC controllers’, Proc. IMechE, 1996, 210, (3), pp. 169182.
    19. 19)
      • 10. Zhao, H., Lan, X., Xue, N.: ‘Excitation prediction control of multi-machine power systems using balanced reduced model’, IET Gener. Transm. Distrib., 2014, 8, pp. 10751081.
    20. 20)
      • 38. Munoz-Hernandez, G.A., Jones, D.I.: ‘Simulation studies of a GPC controller for a hydroelectric plant’, Trans. Inst. Meas. Control, 2007, 29, (1), pp. 3551.
    21. 21)
      • 42. Rossiter, J.A.: ‘Model-based predictive control: a practical approach’ (CRC Press, Boca Raton, 2003, 1st edn.).
    22. 22)
      • 19. Liaw, H.C., Shirinzadeh, B., Smith, J.: ‘Enhanced sliding mode motion tracking control of piezoelectric actuators’, Sens. Actuators A-Phys., 2007, 138, (1), pp. 194202.
    23. 23)
      • 32. Mayne, D.Q., Rawlings, J.B., Rao, C.V.: ‘Constrained model predictive control: Stability and optimality’, Automatica, 2000, 36, (6), pp. 789814.
    24. 24)
      • 41. Chen, D.Y., Zhao, W.L., Sprott, J.C.: ‘Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization’, Nonlinear Dyn., 2013, 73, (3), pp. 14951505.
    25. 25)
      • 40. Rossiter, J.A., Neal, P.W., Yao, L.: ‘Applying predictive control to a fossil-fired power station’, Trans. Inst. Meas. Control, 2002, 24, (3), pp. 177194.
    26. 26)
      • 26. Jiang, H., Lin, J., Song, Y.: ‘Explicit model predictive control applications in power systems: an AGC study for an isolated industrial system’, IET Gener. Transm. Distrib., 2016, 10, pp. 964971.
    27. 27)
      • 22. Koo, G.B., Park, J.B., Joo, Y.H.: ‘Intelligent digital redesign for non-linear systems: observer-based sampled-data fuzzy control approach’, IET Control Theory Appl., 2016, 10, (1), pp. 19.
    28. 28)
      • 46. Chen, D.Y., Ding, C., Do, Y.H.: ‘Nonlinear dynamic analysis for a Francis hydro-turbine governing system and its control’, J. Franklin Inst., 2014, 351, (9), pp. 45964618.
    29. 29)
      • 28. Sergey, D., Lars, N.: ‘MPC schemes guaranteeing ISDS and ISS for nonlinear (time-delay) systems’, Math. Probl. Eng., 2012, 2012, Article ID 964742, DOI: 10.1155/2012/964742.
    30. 30)
      • 29. Liu, J.F., David, M.P., Christofides, P.D.: ‘Distributed model predictive control of nonlinear process systems’, AIChE J., 2009, 55, (5), pp. 11711184.
    31. 31)
      • 21. Tokat, S., Eksin, I., Guzelkaya, M.: ‘Sliding mode control of high order systems using a constant nonlinear sliding surface on a transformed coordinate axis’, J. Vib. Control, 2008, 14, (6), pp. 909927.
    32. 32)
      • 4. Wang, F.J., Li, X.Q., Ma, J.M., et al: ‘Experimental investigation of characteristic frequency in unsteady hydraulic behavior of a large hydraulic turbine’, J. Hydrodynamics B, 2009, 21, (1), pp. 1219.
    33. 33)
      • 2. Wagner, B., Hauer, C., Schoder, A., et al: ‘A review of hydropower in Austria: past, present and future development’, Renew. Sustain. Energy Rev., 2015, 50, pp. 304314.
    34. 34)
      • 23. Fahas, S., Le-Huy, H., Kamwa, I.: ‘Fuzzy direct torque control of switched reluctance motors’. IEEE Industrial Electronics Society, Montreal, Canada, October 2012, pp. 2528.
    35. 35)
      • 18. Chen, C.T.: ‘A sliding mode control strategy for robust temperature trajectory tracking of a batch reactor’, Chem. Eng. Commun., 2014, 201, (1), pp. 122.
    36. 36)
      • 14. Yin, C., Cheng, Y.H., Chen, Y.Q., et al: ‘Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems’, Nonlinear Dyn., 2015, 82, (1), pp. 3952.
    37. 37)
      • 6. Fang, H.Q., Chen, L., Shen, Z.Y.: ‘Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor’, Energy Convers. Manage., 2011, 52, (4), pp. 17631770.
    38. 38)
      • 39. Sansevero, G., Pascoli, B.C.: ‘Model predictive control algorithm for Francis hydro turbo generators’ (Waterpower XIII, Buffalo, New York, 2003).
    39. 39)
      • 7. Lampropoulos, I., Garoufalis, P., Bosch, P.P.J.: ‘Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation’, IET Gener. Transm. Distrib., 2015, 9, pp. 23192327.
    40. 40)
      • 31. Zhao, H., Wu, Q., Guo, Q.: ‘Optimal active power control of a wind farm equipped with energy storage system based on distributed model predictive control’, IET Gener. Transm. Distrib., 2016, 10, pp. 669677.
    41. 41)
      • 13. Lin, T.C., Chen, M.C.: ‘Adaptive hybrid type-2 intelligent sliding mode control for uncertain nonlinear multivariable dynamical systems’, Fuzzy Sets Syst., 2011, 171, (1), pp. 4471.
    42. 42)
      • 8. Munoz-Hernandez, G.A., Gracios-Marin, C.A., Jones, D.I.: ‘Evaluation of gain scheduled predictive control in a nonlinear MIMO model of a hydropower station’, Int. J. Electr. Power Energy Syst., 2015, 66, pp. 125132.
    43. 43)
      • 12. Liu, Y.J., Lan, Q.X., Qian, C.J., et al: ‘Universal finite-time observer design and adaptive frequency regulation of hydraulic turbine systems’, IET Control Theory Appl., 2016, 10, (4), pp. 363370.
    44. 44)
      • 44. Xu, B.B., Chen, D.Y., Zhang, H.: ‘Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system’, Chaos Solitons Fractals, 2015, 75, pp. 5061.
    45. 45)
      • 25. Diehl, M., Amrit, R., Rawlings, J.B.: ‘A Lyapunov function for economic optimizing model predictive control’, IEEE Trans. Autom. Control, 2011, 56, (3), pp. 703707.
    46. 46)
      • 1. Munoz-Hernandez, G.A.: ‘Modeling and controlling hydropower plants’ (Springer-Verlag Press, London, 2013, 1st edn.).
    47. 47)
      • 24. Chang, W.J., Huang, B.J.: ‘Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises’, ISA Trans., 2014, 53, (6), pp. 17871795.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1300
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading