http://iet.metastore.ingenta.com
1887

Non-linear fuzzy predictive control of hydroelectric system

Non-linear fuzzy predictive control of hydroelectric system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study brings out a brand new non-linear predictive control method, a fuzzy generalised predictive control, for hydroelectric plant systems. Takagi–Sugeno (T–S) fuzzy method and generalised predictive control are implemented in the non-linear control method. The basic concept of the method is generalised predictive control, which is a linear system based method. However, the authors novelty adopt fuzzy model, especially the T–S model, as the prediction model to broaden the applications of the predictive control to non-linear range. Therefore, the proposed method inherits the advantages of generalised predictive control, but it can also effectively control a complex non-linear system. Its effectiveness and efficiency are verified by Lyapunov stability theory. Applying the control method on the non-linear hydroelectric system, the different experiments show that this control method succeeds in maintaining the hydroelectric system stable. Those experimental results accord with theoretic analysis. Thus, the proposed control method enjoys the capacity to govern a non-linear system. A comparison experiment between the proposed method and PID method illustrates the advantages of the authors’ method, which are its smooth treatment, less overshoot and fast to be stable of response. In addition, discussions about the tuning control parameters facilitate the usages of the proposed method.

References

    1. 1)
      • 1. Munoz-Hernandez, G.A.: ‘Modeling and controlling hydropower plants’ (Springer-Verlag Press, London, 2013, 1st edn.).
    2. 2)
      • 2. Wagner, B., Hauer, C., Schoder, A., et al: ‘A review of hydropower in Austria: past, present and future development’, Renew. Sustain. Energy Rev., 2015, 50, pp. 304314.
    3. 3)
      • 3. Hennig, T., Wang, W.L., Feng, Y., et al: ‘Review of Yunnan's hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences’, Renew. Sustain. Energy Rev., 2013, 27, pp. 585595.
    4. 4)
      • 4. Wang, F.J., Li, X.Q., Ma, J.M., et al: ‘Experimental investigation of characteristic frequency in unsteady hydraulic behavior of a large hydraulic turbine’, J. Hydrodynamics B, 2009, 21, (1), pp. 1219.
    5. 5)
      • 5. Chen, Z.H., Yuan, X.H., Ji, B., et al: ‘Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II’, Energy Convers. Manage., 2014, 84, pp. 390404.
    6. 6)
      • 6. Fang, H.Q., Chen, L., Shen, Z.Y.: ‘Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor’, Energy Convers. Manage., 2011, 52, (4), pp. 17631770.
    7. 7)
      • 7. Lampropoulos, I., Garoufalis, P., Bosch, P.P.J.: ‘Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation’, IET Gener. Transm. Distrib., 2015, 9, pp. 23192327.
    8. 8)
      • 8. Munoz-Hernandez, G.A., Gracios-Marin, C.A., Jones, D.I.: ‘Evaluation of gain scheduled predictive control in a nonlinear MIMO model of a hydropower station’, Int. J. Electr. Power Energy Syst., 2015, 66, pp. 125132.
    9. 9)
      • 9. Zambelli, M.S., Lopes, M.S., Soares, S.: ‘Long-term hydropower scheduling using model predictive control approach with hybrid Monthly-Annual inflow forecasting’. 6th IEEE/PES Transmission and Distribution – Latin America Conf. and Exposition (TandD-LA), Montevideo, September 2012.
    10. 10)
      • 10. Zhao, H., Lan, X., Xue, N.: ‘Excitation prediction control of multi-machine power systems using balanced reduced model’, IET Gener. Transm. Distrib., 2014, 8, pp. 10751081.
    11. 11)
      • 11. Ding, X.B., Alok, S.: ‘Hydropower plant frequency control via feedback linearization and sliding mode control’. ASME Dynamic Systems and Control Conf./Bath/ASME Symp. on Fluid Power and Motion Control, Arlington, Virginia, USA, October 2011.
    12. 12)
      • 12. Liu, Y.J., Lan, Q.X., Qian, C.J., et al: ‘Universal finite-time observer design and adaptive frequency regulation of hydraulic turbine systems’, IET Control Theory Appl., 2016, 10, (4), pp. 363370.
    13. 13)
      • 13. Lin, T.C., Chen, M.C.: ‘Adaptive hybrid type-2 intelligent sliding mode control for uncertain nonlinear multivariable dynamical systems’, Fuzzy Sets Syst., 2011, 171, (1), pp. 4471.
    14. 14)
      • 14. Yin, C., Cheng, Y.H., Chen, Y.Q., et al: ‘Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems’, Nonlinear Dyn., 2015, 82, (1), pp. 3952.
    15. 15)
      • 15. Matthew, K., Petros, I.: ‘Multiple model adaptive control with mixing’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 1821836.
    16. 16)
      • 16. Norton, M., Khoo, S., Kouzani, A., et al: ‘Adaptive fuzzy multi-surface sliding control of multiple-input and multiple-output autonomous flight systems’, IET Control Theory Appl., 2015, 9, (4), pp. 587597.
    17. 17)
      • 17. Kurniawan, E., Cao, Z.W., Man, Z.H.: ‘Digital design of adaptive repetitive control of linear systems with time-varying periodic disturbances’, IET Control Theory Appl., 2014, 8, (17), pp. 19952003.
    18. 18)
      • 18. Chen, C.T.: ‘A sliding mode control strategy for robust temperature trajectory tracking of a batch reactor’, Chem. Eng. Commun., 2014, 201, (1), pp. 122.
    19. 19)
      • 19. Liaw, H.C., Shirinzadeh, B., Smith, J.: ‘Enhanced sliding mode motion tracking control of piezoelectric actuators’, Sens. Actuators A-Phys., 2007, 138, (1), pp. 194202.
    20. 20)
      • 20. Liu, Y., Ban, X.J., Wu, F., et al: ‘A gain-scheduling control for T–S fuzzy systems based on linear parameter-varying control theory’, J. Dyn. Syst. Meas. Control, 2015, 138, (1), p. 011008.
    21. 21)
      • 21. Tokat, S., Eksin, I., Guzelkaya, M.: ‘Sliding mode control of high order systems using a constant nonlinear sliding surface on a transformed coordinate axis’, J. Vib. Control, 2008, 14, (6), pp. 909927.
    22. 22)
      • 22. Koo, G.B., Park, J.B., Joo, Y.H.: ‘Intelligent digital redesign for non-linear systems: observer-based sampled-data fuzzy control approach’, IET Control Theory Appl., 2016, 10, (1), pp. 19.
    23. 23)
      • 23. Fahas, S., Le-Huy, H., Kamwa, I.: ‘Fuzzy direct torque control of switched reluctance motors’. IEEE Industrial Electronics Society, Montreal, Canada, October 2012, pp. 2528.
    24. 24)
      • 24. Chang, W.J., Huang, B.J.: ‘Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises’, ISA Trans., 2014, 53, (6), pp. 17871795.
    25. 25)
      • 25. Diehl, M., Amrit, R., Rawlings, J.B.: ‘A Lyapunov function for economic optimizing model predictive control’, IEEE Trans. Autom. Control, 2011, 56, (3), pp. 703707.
    26. 26)
      • 26. Jiang, H., Lin, J., Song, Y.: ‘Explicit model predictive control applications in power systems: an AGC study for an isolated industrial system’, IET Gener. Transm. Distrib., 2016, 10, pp. 964971.
    27. 27)
      • 27. Imura, A., Takahashi, T., Fujitsuna, M.: ‘Improved PMSM model considering flux characteristics for model predictive-based current control’, IEEJ Trans. Electr. Electron. Eng., 2015, 10, (1), pp. 92100.
    28. 28)
      • 28. Sergey, D., Lars, N.: ‘MPC schemes guaranteeing ISDS and ISS for nonlinear (time-delay) systems’, Math. Probl. Eng., 2012, 2012, Article ID 964742, DOI: 10.1155/2012/964742.
    29. 29)
      • 29. Liu, J.F., David, M.P., Christofides, P.D.: ‘Distributed model predictive control of nonlinear process systems’, AIChE J., 2009, 55, (5), pp. 11711184.
    30. 30)
      • 30. Aydiner, E., Brunner, F.D., Heemels, W.P.M.H., et al: ‘Robust self-triggered model predictive control for constrained discrete-time LTI systems based on homothetic tubes’. Proc. European Control Conf. (ECC), Linz, Austria, 2015, pp. 15811587.
    31. 31)
      • 31. Zhao, H., Wu, Q., Guo, Q.: ‘Optimal active power control of a wind farm equipped with energy storage system based on distributed model predictive control’, IET Gener. Transm. Distrib., 2016, 10, pp. 669677.
    32. 32)
      • 32. Mayne, D.Q., Rawlings, J.B., Rao, C.V.: ‘Constrained model predictive control: Stability and optimality’, Automatica, 2000, 36, (6), pp. 789814.
    33. 33)
      • 33. Grüne, L., Pannek, J.: ‘Nonlinear Model Predictive Control, Communications and Control Engineering’ (Springer-Verlag, London, 2011, 1st edn.).
    34. 34)
      • 34. Kemih, K., Tekkouk, O., Filali, S.: ‘Constrained generalised predictive control with estimation by genetic algorithm for a magnetic levitation system’, Int. J. Innov. Comput. Inf. Control, 2006, 2, (3), pp. 543552.
    35. 35)
      • 35. Zhang, Y.J., Chai, T.Y., Wang, H.: ‘An adaptive generalized predictive control method for nonlinear systems based on ANFIS and multiple models’, IEEE Trans. Fuzzy Syst., 2010, 18, (6), pp. 10701082.
    36. 36)
      • 36. Kouvaritakis, B., Rossiter, J.A., Gossner, J.R.: ‘Improved algorithm for multivariable stable GPC’, IEE Proc. D Control Theory Appl., 1997, 144, (4), pp. 309312.
    37. 37)
      • 37. Rossiter, J.A., Grinnell, B.G.: ‘Improving the tracking of GPC controllers’, Proc. IMechE, 1996, 210, (3), pp. 169182.
    38. 38)
      • 38. Munoz-Hernandez, G.A., Jones, D.I.: ‘Simulation studies of a GPC controller for a hydroelectric plant’, Trans. Inst. Meas. Control, 2007, 29, (1), pp. 3551.
    39. 39)
      • 39. Sansevero, G., Pascoli, B.C.: ‘Model predictive control algorithm for Francis hydro turbo generators’ (Waterpower XIII, Buffalo, New York, 2003).
    40. 40)
      • 40. Rossiter, J.A., Neal, P.W., Yao, L.: ‘Applying predictive control to a fossil-fired power station’, Trans. Inst. Meas. Control, 2002, 24, (3), pp. 177194.
    41. 41)
      • 41. Chen, D.Y., Zhao, W.L., Sprott, J.C.: ‘Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization’, Nonlinear Dyn., 2013, 73, (3), pp. 14951505.
    42. 42)
      • 42. Rossiter, J.A.: ‘Model-based predictive control: a practical approach’ (CRC Press, Boca Raton, 2003, 1st edn.).
    43. 43)
      • 43. Rossiter, J.A., Gossner, J.R., Kouvaritakis, B.: ‘Infinite horizon stable predictive control’, IEEE Trans. Autom. Control, 1996, 41, (10), pp. 15221527.
    44. 44)
      • 44. Xu, B.B., Chen, D.Y., Zhang, H.: ‘Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system’, Chaos Solitons Fractals, 2015, 75, pp. 5061.
    45. 45)
      • 45. Shen, Z.Y.: ‘Hydraulic Turbine Reglation’ (China Water Press, Beijing, 1998, 3th edn., in Chinese).
    46. 46)
      • 46. Chen, D.Y., Ding, C., Do, Y.H.: ‘Nonlinear dynamic analysis for a Francis hydro-turbine governing system and its control’, J. Franklin Inst., 2014, 351, (9), pp. 45964618.
    47. 47)
      • 47. Zhang, R.F., Chen, D.Y., Ma, X.Y.: ‘Nonlinear predictive control of a hydropower system model’, Entropy, 2015, 17, (9), pp. 61296149.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1300
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address