access icon free Particle filter-based dual estimation for synchronous generators

This study proposes a particle filter (PF)-based dual estimation method for tracking the dynamic states of a synchronous generator. The authors consider the situation where the field voltage measurements are not readily available. The PF is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. To exploit the tracking results from the estimator, the authors consider the application of use the estimated field voltage to identify internal failures in the excitation subsystem. The proposed method is tested on a 10-machine, 39-bus system to assess selectivity between estimation for regular external disturbances and both physical failure, and modelling abnormality within excitation system. The presented studies show that the proposed method (i) provides reasonable tracking results for the dynamic states and the field voltage simultaneously, (ii) rapidly tracks minor excitation loss due to exciter internal failure while maintaining selectivity and (iii) is robust to measurement noise.

Inspec keywords: particle filtering (numerical methods); synchronous generators; state estimation; failure analysis

Other keywords: excitation system; regular external disturbances; abnormality modelling; internal failure identification; particle filter-based dual estimation method; minor excitation loss tracking; 39-bus system; measurement noise; synchronous generators; excitation subsystem; PF-based dual estimation method

Subjects: Reliability; Filtering methods in signal processing; Synchronous machines

References

    1. 1)
      • 22. Andrieu, C., Doucet, A., Singh, S.S., et al: ‘Particle methods for change detection, system identification, and control’, Proc. IEEE, 2004, 92, (3), pp. 423438.
    2. 2)
      • 1. Ghahremani, E., Kamwa, I.: ‘Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 25562566.
    3. 3)
      • 4. Singh, A., Pal, B.: ‘Decentralized dynamic state estimation in power systems using unscented transformation’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 794804.
    4. 4)
      • 2. Wang, S., Gao, W., Meliopoulos, A.: ‘An alternative method for power system dynamic state estimation based on unscented transform’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 942950.
    5. 5)
      • 23. Berdy, J.: ‘Loss of excitation protection for modern synchronous generators’, IEEE Trans. Power Appar. Syst., 1975, 94, (5), pp. 14571463.
    6. 6)
      • 10. Eremia, M., Shahidehpour, M.: ‘Handbook of electrical power system dynamics: modeling, stability, and control’ (Wiley-IEEE Press, Hoboken, NJ, 2013).
    7. 7)
      • 13. Ariff, M., Pal, B., Singh, A.: ‘Estimating dynamic model parameters for adaptive protection and control in power system’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 829839.
    8. 8)
      • 29. Akhlaghi, S., Zhou, N., Huang, Z.: ‘A multi-step adaptive interpolation approach to mitigating the impact of nonlinearity on dynamic state estimation’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 11.
    9. 9)
      • 8. Kavasseri, R., Cui, Y., Brahma, S.: ‘A new approach for event detection based on energy functions’. PES General Meeting – Conf. Exposition, 2014 IEEE, July 2014, pp. 15.
    10. 10)
      • 14. Zaker, B., Gharehpetian, G.B., Karrari, M., et al: ‘Simultaneous parameter identification of synchronous generator and excitation system using online measurements’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 12301238.
    11. 11)
      • 25. Pai, M.A.: ‘Energy function analysis for power system stability’ (Kluwer Academic Publishers, Norwell, Massachusetts, 1989).
    12. 12)
      • 24. Reimert, D.: ‘Protective relaying for power generation systems’ (CRC Press, Boca Raton, FL, 2006).
    13. 13)
      • 20. Collings, I., Krishnamurthy, V., Moore, J.: ‘On-line identification of hidden markov models via recursive prediction error techniques’, IEEE Trans. Signal Process., 1994, 42, (12), pp. 35353539.
    14. 14)
      • 16. Nemeth, C., Fearnhead, P., Mihaylova, L.: ‘Sequential monte carlo methods for state and parameter estimation in abruptly changing environments’, IEEE Trans. Signal Process., 2014, 62, (5), pp. 12451255.
    15. 15)
      • 30. Zhou, N., Meng, D., Huang, Z., et al: ‘Dynamic state estimation of a synchronous machine using PMU data: a comparative study’, IEEE Trans.Smart Grid, 2015, 6, (1), pp. 450460.
    16. 16)
      • 21. Daroogheh, N., Meskin, N., Khorasani, K.: ‘Particle filtering for state and parameter estimation in gas turbine engine fault diagnostics’. American Control Conf. (ACC), 2013, June 2013, pp. 43434349.
    17. 17)
      • 19. Liu, J., West, M.: ‘Combined parameter and state estimation in simulation-based filtering’, in Doucet, A., de Freitas, N., Gordon, N. (Eds.): ‘Sequential Monte Carlo methods in practice’ (Springer, New York, 2001), pp. 197223.
    18. 18)
      • 18. Simon, D.: ‘Optimal state estimation: Kalman, H1, and nonlinear approaches’ (Wiley-Interscience, Hoboken, NJ, 2006).
    19. 19)
      • 6. Cui, Y., Kavasseri, R.: ‘A particle filter for dynamic state estimation in multi-machine systems with detailed models’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33773385.
    20. 20)
      • 7. Ghahremani, E., Kamwa, I.: ‘Local and wide-area PMU-based decentralized dynamic state estimation in multi-machine power systems’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 547562.
    21. 21)
      • 17. Arulampalam, M., Maskell, S., Gordon, N., et al: ‘A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 174188.
    22. 22)
      • 11. Huang, Z., Du, P., Kosterev, D., et al: ‘Generator dynamic model validation and parameter calibration using phasor measurements at the point of connection’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 19391949.
    23. 23)
      • 5. Huang, Z., Schneider, K., Nieplocha, J., et al: ‘Estimating power system dynamic states using extended Kalman filter’. 2014 IEEE PES General Meeting – Conf. Exposition, July 2014, pp. 15.
    24. 24)
      • 26. IEEE standard for synchrophasor measurements for power systems’. IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005), December 2011, pp. 161.
    25. 25)
      • 12. Meng, D., Zhou, N., Lu, S., et al: ‘An expectation-maximization method for calibrating synchronous machine models’. 2013 IEEE Power Energy Society General Meeting, July 2013, pp. 15.
    26. 26)
      • 28. Akhlaghi, S., Zhou, N., Huang, Z.: ‘Exploring adaptive interpolation to mitigate non-linear impact on estimating dynamic states’. 2015 IEEE Power Energy Society General Meeting, July 2015, pp. 15.
    27. 27)
      • 9. Cui, Y., Kavasseri, R., Brahma, S.: ‘Dynamic state estimation assisted posturing for generator out-of-step protection’. 2016 IEEE Power and Energy Society General Meeting (PESGM), July 2016, pp. 15.
    28. 28)
      • 27. IEEE recommended practice for excitation system models for power system stability studies’. IEEE Std 421.5-2005 (Revision of IEEE Std 421.5-1992), 2006, pp. 185.
    29. 29)
      • 3. Zhou, N., Meng, D., Lu, S.: ‘Estimation of the dynamic states of synchronous machines using an extended particle filter’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 41524161.
    30. 30)
      • 15. Zia, A., Kirubarajan, T., Reilly, J., et al: ‘An em algorithm for nonlinear state estimation with model uncertainties’, IEEE Trans. Signal Process., 2008, 56, (3), pp. 921936.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1294
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1294
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading