Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Method considering the dynamic coupling characteristic in power system for stability assessment

The passive fluctuation of the node voltage (NVPF) and the active fluctuation of node voltage (NVAF) are defined to analyse the dynamic coupling characteristic between the source, the network and the load. The NVPF indicates how the effect of come from by other nodes or regions, and the NVAF indicates the voltage impact on other nodes or region. Their combination can comprehensively reflect the coupling characteristic relationship of each part which is closely related to the power flow and the electrical connection. A method in non-analytical complex domain is proposed to find this relationship. Finally, the method is validated by the simulations on a three-bus system, the IEEE39-bus system and an actual system.

References

    1. 1)
      • 3. Bompard, E., Napoli, R., Xue, F.: ‘Extended topological approach for the assessment of structural vulnerability in transmission networks’, IET. Gener. Transm. Distrib., 2010, 4, (6), pp. 716724.
    2. 2)
      • 16. Chung, C., Wei, Y., Fang, L.: ‘Decomposed predictor-corrector interior point method for dynamic optimal power flow’, IEEE Trans. Power Syst., 2010, 26, (3), pp. 10301039.
    3. 3)
      • 17. Xi, Z., Tse, C.: ‘Assessment of robustness of power systems from a network perspective’, IEEE J. Emerg. Sel. Top. Circ. Syst., 2015, 5, (3), pp. 456464.
    4. 4)
      • 22. Tan, Y., Li, X.R., Cai, Y.: ‘Critical node identification for complex power grid based on electrical distance’, Proc. of the CSEE, 2014, 34, (1), pp. 146152.
    5. 5)
      • 18. DelReal, A., Arce, A., Bordons, C.: ‘An integrated framework for distributed model predictive control of large-scale power networks’, IEEE Trans. Ind. Inf., 2013, 10, (1), pp. 197209.
    6. 6)
      • 20. Hao, B., Shihong, M.: ‘Hybrid flow betweenness approach for identification of vulnerable line in power system’, IET. Gener. Transm. Distrib., 2015, 9, (12), pp. 13241331.
    7. 7)
      • 2. Wang, K., Zhang, B.H., Zhang, Z., et al: ‘An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load’, Sci. Direct Phys. A, 2011, 390, (6), pp. 46924701.
    8. 8)
      • 13. Wang, Y., Wang, H., Chan, K., et al: ‘Dynamic voltage security constrained optimal coordinated voltage control using enhanced particle swarm optimisation’, IET. Gener. Transm. Distrib., 2011, 5, (2), pp. 239248.
    9. 9)
      • 12. Kamel, S., Raafat, E., Meyers, Y.: ‘Dynamic effects of power control on third-generation system capacity’, Bell Labs Tech. J., 2003, 7, (3), pp. 127137.
    10. 10)
      • 8. Zhang, J., Tse, C.T., Wang, W., et al: ‘Voltage stability analysis based on probabilistic power flow and maximum entropy’, IET. Gener. Transm. Distrib., 2010, 4, (4), pp. 530537.
    11. 11)
      • 10. Nassereddine, M., Rizk, J., Hellany, A.: ‘Relation between transmission lines coupling factor and over head earth wire length: its impacts on fault current distributions’, IET. Gener. Transm. Distrib., 2014, 8, (4), pp. 600608.
    12. 12)
      • 4. Minyu, F., Hong, Q., Zhang, Y.: ‘Evolving scale-free networks by Poisson process: modeling and degree distribution’, IEEE Trans. Cybern., 2015, 5, (4), pp. 112.
    13. 13)
      • 1. Andersson, G., Donalek, P., Farmer, R., et al: ‘Causes of the 2003 major grid blackouts in north America and Europe, and recommended means to improve system dynamic performance’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 19221928.
    14. 14)
      • 7. Wang, Y., Wang, C., Lin, F., et al: ‘Incorporating generator equivalent model into voltage stability analysis’, IEEE Trans Power Syst., 2013, 28, (4), pp. 48574866.
    15. 15)
      • 5. Ming, D., Pingping, H.: ‘Reliability assessment to large-scale power grid based on small-world topological model’. Proc. Int. Conf. Power System Technology, Stockholm, Sweden, May 2006, pp. 17.
    16. 16)
      • 15. Zhijun, Q., Yunhe, H., Cheng, L.: ‘Solving long time-horizon dynamic optimal power flow of large-scale power grids with direct solution method’, IET. Gener. Transm. Distrib., 2014, 8, (5), pp. 895906.
    17. 17)
      • 11. Abe, S., Fukunaga, Y., Isono, A.: ‘Power system voltage stability’, IEEE Trans. Power Appar. Syst., 1982, 101, (10), pp. 38303840.
    18. 18)
      • 14. Xiaoping, T., Dessaint, L., Huy, N.-D.: ‘Transient stability constrained optimal power flow using independent dynamic simulation’, IET. Gener. Transm. Distrib., 2013, 7, (3), pp. 244253.
    19. 19)
      • 9. Ruifeng, Y., Saha, T.K.: ‘Analysis of unbalanced distribution lines with mutual coupling across different voltage levels and the corresponding impact on network voltage’, IET. Gener. Transm. Distrib., 2015, 9, (13), pp. 17271737.
    20. 20)
      • 19. Coelho, M., Costa, E., Kurokawa, S.: ‘Estimation of transmission line parameters using multiple methods’, IET. Gener. Transm. Distrib., 2015, 9, (16), pp. 26172624.
    21. 21)
      • 6. Hasani, M.: ‘Method of combined static and dynamic analysis of voltage collapse in voltage stability assessment’. Proc. Int. Conf. Transmission and Distribution Conf. and Exhibition, Asia and Pacific, August 2005, pp. 16.
    22. 22)
      • 21. Liu, G., Yang, Y.: ‘Theoretical foundation of power system voltage and angle stability unified analysis’, Proc. of the CSEE, 2013, 33, (13), pp. 135149.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1270
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1270
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address