http://iet.metastore.ingenta.com
1887

Fractional order control of static series synchronous compensator with parametric uncertainty

Fractional order control of static series synchronous compensator with parametric uncertainty

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In modern power systems the smooth control of active power flow is one of the major concerns for power industry. In the current study the authors devise an adaptive fractional order robust damping control system for static series synchronous compensator connected to an infinite power transmission network. A detailed non-linear state model is presented with inclusion of parametric uncertainties, disturbances and other non-linearities. A novel fractional order sliding manifold is proposed and based on it an adaptive fractional order controller is derived. The uncertainty in the state model is estimated online using the adaptive control system. The stability and the convergence proof of the closed loop system is verified using fractional order Lyapunov theorem. Furthermore, the proposed control scheme is compared with the classical proportional integral derivative, integer order sliding mode and fractional order controllers under different scenarios. The effectiveness of the proposed control scheme is verified using numerical simulations.

References

    1. 1)
      • 1. Vishnu, P.S.: ‘Static synchronous series compensator (SSSC) an approach for reactive power compensation for the transmission system’, IJIRT, 2014, 1, (10), pp. 1521.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 5. Bongiomo, M., Svensson, J., Angquist, L.: ‘On control of static synchronous series compensator for SSR mitigation’, IEEE Trans. PELS, 2008, 23, (2), pp. 735737.
    6. 6)
      • 6. Narne, R., Panda, P.C., Therattil, J.P.: ‘Genetic algorithm based simultaneous coordination of PSS and FACTS controllers for power oscillations damping’. IEEE Third Int. Conf. Sustainable Energy Technologies, Kathmandu, 2012, pp. 8590.
    7. 7)
      • 7. Leonard, L.G.: ‘Power system stability and control’ (CRC Press, New York, 2012).
    8. 8)
      • 8. Sobuj, K.R., Pejush, C.S., Munshi, S.A., et al: ‘Novel approach of PID control scheme with UPFC'S for damping of oscillations’, IJCEE, 2012, 4, (2), pp. 104109.
    9. 9)
      • 9. Rao, C.K., Sahu, K.B.M., Yellampalli, S., et al: ‘Performance of a fuzzy logic based AVR in SMIB, MMIB system and power flow control using SSSC and IPFC’, IJSER, 2012, 2, (1), pp. 260268.
    10. 10)
      • 10. Shaikh, S.A., Ahmed, I.: ‘Design of PID controller as an AVR in frequency domain’, Sci. Tech. Dev., 2008, 27, (1), pp. 2125.
    11. 11)
      • 11. Mustafa, M.W., Alsaedi, M.A.: ‘Adaptive PID controller based on real base function network identification, and genetic algorithm in automatic voltage regulator system’, IJSRP, 2012, 2, (11), pp. 111.
    12. 12)
      • 12. Ganesh, C., Lalitha, M.O., Divya, P.: ‘An auxiliary fuzzy logic controller for mitigating low frequency oscillations’, IJCSIS, 2014, 12, (11), pp. 1318.
    13. 13)
      • 13. Ravindra, S., Veera, R.V.C., Sivanagaraju, S.: ‘Damping power system oscillations by SSSC equipped with a hybrid damping controller’, IJAREEIE, 2013, 2, (7), pp. 30403048.
    14. 14)
      • 14. Pandey, R.K.: ‘Analysis and design of multi stage LQR UPFC’. Int. Conf. Power, Control and Embedded Systems, Allahabad, 2010, pp. 16.
    15. 15)
      • 15. Perruquetti, W., Barbot, J.P.: ‘Sliding mode control in engineering’ (Marcel Dekker, New York, 2002).
    16. 16)
      • 16. Vadim, U., Jurgen, G., Jingxin, S.: ‘Sliding mode control in electromechanical systems’ (CRC Press, New York, 2009).
    17. 17)
      • 17. Lei-Po, L., Zhu-mu, F., Xiao-Na, S.: ‘Sliding mode control with disturbance observer for a class of nonlinear systems’, IJAC, 2012, 9, (5), pp. 487491.
    18. 18)
    19. 19)
    20. 20)
      • 20. Seshagiri, S., Khalil, H.K.: ‘Robust output feedback regulation of minimum phase nonlinear systems using conditional integrator’, Automatica, 2005, 41, (1), pp. 4354.
    21. 21)
    22. 22)
    23. 23)
      • 23. Liping, C., Ranchao, W., Yigang, H., et al: ‘Adaptive sliding mode control for fractional order uncertain linear systems with nonlinear disturbances’, Int. J. Nonlinear Dyn. Chaos Eng., 2015, 80, pp. 5158.
    24. 24)
    25. 25)
      • 25. Miller, K., Ross, B.: ‘An introduction to the fractional calculus and fractional differential equations’ (Wiley Interscience, San Francisco, 1993).
    26. 26)
      • 26. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, New York, 1999).
    27. 27)
      • 27. Matignon, D.: ‘Stability properties for generalized fractional differential systems’, ESAIM., Fractional Differ. Syst. Models Methods Appl., 1998, 5, pp. 145158.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 33. Bansal, R.C., Bhatti, T.S., Kumar, V.: ‘Reactive power control of autonomous wind diesel hybrid power system using ANN’. IPEC. Conf., December 2007.
    34. 34)
      • 34. Jianyong, Y., Guichao, Y., Zongxia, J.: ‘High dynamic feedback linearization control of hydraulic actuators with backstepping’, J. Syst. Control Eng., 2015, 229, (8), pp. 728737.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1109
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1109
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address