Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimal power flow in distribution network considering spatial electro-thermal coupling effect

The conductor resistance changes in accordance with the conductor temperature, in turn the line thermal capacity limit and power flow are influenced by its spatial characteristics of line routes and surrounding weather conditions. In light of the significant difference of spatial characteristics of line routes and weather conditions in different regions covered by distribution network, a novel optimal power flow (OPF) model in distribution network considering spatial electro-thermal coupling effect is proposed to integrate heat transfer constraints and electro-thermal coupling constraints into normal distribution network operation constraints. To address the computational complexity of the proposed model, the line thermal capacity limit is calculated firstly using the spatial steady-state heat balance equation. Then, a genetic algorithm combined with an extended back/forward sweep method is presented to solve the distribution system OPF problem, in which the heat balance equation is embedded in the forward sweep stage of the power flow calculation. Consequently, line temperatures, resistances, and power flows are dynamically updated during the iterative procedure. A 14-bus system with nine regions shows that the spatial electro-thermal coupling effect has a significant impact on the result of power flow and the optimal dispatch of the distributed generation in the distribution network.

References

    1. 1)
      • 9. Swatek, D.R.: ‘An expected per-unit rating for overhead transmission lines’, Int. J. Electr. Power Energy Syst., 2004, 26, (4), pp. 241247.
    2. 2)
      • 12. Alguacil, N., Banakar, M.H., Galiana, F.D.: ‘Electrothermal coordination part II: case studies’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 17381745.
    3. 3)
      • 16. Mengxia, W., Xueshan, H.: ‘Study on electro-thermal coupling optimal power flow model and its simplification’. Power and Energy Society General Meeting, 2010, pp. 16.
    4. 4)
      • 13. Hui, Z., Xueshan, H., Yanling, W.: ‘Fast calculation and analysis of relationship between conductor current and temperature’. 2007 Eighth Int. Power Engineering Conf., Singapore, Singapore, pp. 772777.
    5. 5)
      • 1. Jupe, S.C.E., Taylor, P.C.: ‘Distributed generation output control for network power flow management’, IET Renew. Power Gener., 2008, 3, pp. 371386.
    6. 6)
      • 19. Allan, S., Bryan, D., Pouliot, B.: ‘High-resolution numerical weather prediction (NWP) with data assimilation over Placentia Bay’ (Newfoundland. Oceans-St.John's, 2014), pp. 18.
    7. 7)
      • 20. Mirko, T., Dragoslav′, R.: ‘An initialization procedure in solving optimal power flow by genetic algorithm’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 480487.
    8. 8)
      • 15. Olsen, R., Holboell, J., Gudmundsdóttir, U.S.: ‘Electrothermal coordination in cable based transmission grids’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 48674874.
    9. 9)
      • 2. Neumann, A., Brinckerhoff, P.: ‘Unlock distribution capacity using dynamic thermal ratings’, Energize, 2008, pp. 1819.
    10. 10)
      • 7. Davis, M.W.: ‘A new thermal rating approach: the real time thermal rating system for strategic overhead conductor transmission lines, part I’, IEEE Trans. Power Appar. Syst., 1977, 96, pp. 803809.
    11. 11)
      • 4. Douglass, D.A., Edris, A.: ‘Real-time monitoring and dynamic thermal rating of power transmission circuits’, IEEE Trans. Power Deliv., 1996, 11, (3), pp. 14071418.
    12. 12)
      • 18. Degefa, M.Z., Humayun, M., Safdarian, A., et al: ‘Unlocking distribution network capacity through real-time thermal rating for high penetration of DGs’, Electr. Power Syst. Res., 2014, 117, pp. 3646.
    13. 13)
      • 3. IEEE standard 738-2006 (Revision of IEEE Std 738-1993). IEEE Standard for calculating the current-temperature of Bare Overhead Conductors, 2007.
    14. 14)
      • 8. Davis, M.W.: ‘A new thermal rating approach: the real time thermal rating system for strategic overhead conductor transmission lines, part II’, IEEE Trans. Power Appar. Syst., 1977, 96, pp. 810825.
    15. 15)
      • 6. Khaki, M.: ‘Economic dispatch using advanced dynamic thermal rating’ (University of Alberta, Canada, 2011).
    16. 16)
      • 21. Civanlar, S., Grainger, J.J., Yin, H., et al: ‘Distribution feeder reconfiguration for loss reduction’, IEEE Trans. Power Deliv., 1988, 3, (3), pp. 12171223.
    17. 17)
      • 5. Foss, S.D., Lin, S.H.: ‘Dynamic thermal line ratings part I: dynamic ampacity rating algorithm’, IEEE Trans. Power Appar. Syst., 1983, 102, (6), pp. 18581864.
    18. 18)
      • 11. Banakar, H., Alguacil, N., Galiana, F.D.: ‘Electrothermal coordination part I: theory and implementation schemes’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 798805.
    19. 19)
      • 10. Douglass, D.A., Edris, A., Pritchard, G.A.: ‘Field application of a dynamic thermal circuit rating method’, IEEE Trans. Power Deliv., 1997, 12, (2), pp. 823831.
    20. 20)
      • 17. Khaki, M., Musilek, P., Heckenbergerova, J., et al: ‘Electric power system cost/loss optimization using dynamic thermal rating and linear programming’. Electric Power and Energy Conf. (EPEC), 2010.
    21. 21)
      • 14. Mahmoudian, M., Yousef, G.R.: ‘ATC improvement and losses estimation considering dynamic transmission line ratings’. 20th Iranian Conf. on Electrical Engineering (ICEE), 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.0909
Loading

Related content

content/journals/10.1049/iet-gtd.2016.0909
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address