access icon free Efficient algorithms for real-time monitoring of transmission line parameters and their performance with practical synchrophasors

Accurate transmission line parameters are important for many applications that ensure reliable operation of a power system. The traditional theoretical calculations and offline measurements are widely used approaches obtaining line parameters, but they do not allow tracking of the parameters that change with the environmental factors and load conditions. Synchrophasor-based real-time transmission line parameter monitoring algorithms can track the changing parameters. In this study, two novel line parameter estimation algorithms: a lump parameter model and a distributed parameter model are proposed. The performance of the new algorithms are evaluated under various operating conditions using a real-time digital simulator, and compared with six existing algorithms in terms of both accuracy and computational efficiency. The algorithms were also tested and compared using synchrophasor data obtained from a hardware experimental setup. Furthermore, application of the algorithms to an actual 230kV transmission line is demonstrated. Finally, the sensitivity of the estimated parameters to bias errors in the measurements is analysed.

Inspec keywords: phasor measurement; parameter estimation; power transmission lines

Other keywords: distributed parameter model; voltage 230 kV; environmental factors; synchrophasor-based real-time transmission line parameter monitoring algorithm; load conditions; real-time digital simulator; parameter estimation algorithm

Subjects: Power system measurement and metering; Power transmission lines and cables

References

    1. 1)
      • 3. Bonnin, R.E.A.: ‘Development of a laboratory synchrophasor network and an application to estimate transmission line parameters in real time’. MSc thesis, Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB, Canada, 2013.
    2. 2)
      • 16. Jiang, J., Yang, J., Lin, Y., et al: ‘An adaptive PMU based fault detection/location technique for transmission lines part I: theory and algorithms’, IEEE Trans. Power Del., 2000, 15, (2), pp. 96102.
    3. 3)
      • 8. Phadke, A.G., Thorp, J.S.: ‘Synchronized phasor measurements and their applications’ (Springer, New York, 2008).
    4. 4)
      • 6. CIGRE Working Group B2.12: ‘Thermal behaviour of overhead conductors’, Technical Brochure 207, August 2002.
    5. 5)
      • 22. ‘OpenPDC, Grid Protection Alliance’, http:// openpdc.codeplex.com, accessed 4 December 2015.
    6. 6)
      • 19. Mohr, A.: ‘Quantum computing in complexity theory and theory of computation’, http://www.austinmohr.com/Work_files/complexity.pdf, accessed 14 September 2016.
    7. 7)
      • 13. Liao, Y., Kezunovic, M.: ‘Optimal estimate of transmission line fault location considering measurement errors’, IEEE Trans. Power Del., 2007, 22, pp. 13351341.
    8. 8)
      • 21. Real-time digital simulator (RTDS) power system user's manual’ (RTDS Technologies, Winnipeg, MB, Canada, December2012).
    9. 9)
      • 14. Liao, Y., Kezunovic, M.: ‘Online optimal transmission line parameter estimation for relaying applications’, IEEE Trans. Power Del., 2009, 24, (1), pp. 486493.
    10. 10)
      • 18. Mousavi-Seyedi, S.S., Aminifar, F., Afsharnia, S.: ‘Parameter estimation of multi-terminal transmission lines using joint PMU and SCADA data’, IEEE Trans. Power Del., 2015, 30, (3), pp. 10771085.
    11. 11)
      • 15. Salehi, V., Mazloomzadeh, A., Mohammed, O.: ‘Development and implementation of a phasor measurement unit for real-time monitoring, control and protection of power systems’. Proc. IEEE Power Engineering Society General Meeting, San Diego, CA, USA, 2011, pp. 17.
    12. 12)
      • 5. IEEE Std 738-2012: ‘IEEE standard for calculating the current-temperature relationship of bare overhead conductors’, December 2013.
    13. 13)
      • 26. Ghahremani, E., Kamwa, I.: ‘Local and wide-area PMU-based decentralized dynamic state estimation in multi-machine power systems’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 547562.
    14. 14)
      • 33. ‘Climate, the government of Canada (environment Canada)’, http://climate.weather.gc.ca, accessed 4 December 2015.
    15. 15)
      • 23. IEEE Std C37.118.1-2011: ‘IEEE standard for synchrophasor measurements for power systems’, December 2011.
    16. 16)
      • 32. SEL-2407 satellite-synchronized clock instruction manual’ (SEL Inc., Pullman, WA, USA, 2013), pp. 140.
    17. 17)
      • 2. Shi, D., Tylavsky, D.J., Logic, N., et al: ‘Identification of short transmission-line parameters from synchrophasor measurements’. Proc. 40th North American Power Symp., NAPS ‘08, 2 Calgary, AB, Canada, September 2008, pp. 17.
    18. 18)
      • 24. Tripathy, P., Srivastava, S., Singh, S.: ‘A divide-by-difference-filter based algorithm for estimation of generator rotor angle utilizing synchrophasor measurements’, IEEE Trans. Instrum. Meas., 2010, 59, (6), pp. 15621570.
    19. 19)
      • 17. Sivanagaraju, G., Chakrabarti, S., Srivastava, S.C.: ‘Uncertainty in transmission line parameters: estimation and impact on line current differential protection’, IEEE Trans. Instrum. Meas., 2014, 63, (6), pp. 14961504.
    20. 20)
      • 31. TESLA 4000 user manual – version 2.4 rev 0’ (ERLPhase Power Technologies Ltd, Winnipeg, MB, Canada, 2013), pp. 15.115.15.
    21. 21)
      • 1. Lan, D., Tianshul, B., Daonong, Z.: ‘Transmission line parameters identification based on moving-window TLS and PMU data’. Proc. International Conf. on Advanced Power System Automation and Protection (APAP), Beijing, China, 2011, pp. 21872191.
    22. 22)
      • 11. Kim, I.D., Aggarwal, R.K.: ‘A study on the on-line measurement of transmission line impedances for improved relaying protection’, Electr. Power Energy Syst., 2006, 28, (6), pp. 359366.
    23. 23)
      • 25. Shi, D., Tylavsky, D., Logic, N.: ‘An adaptive method for detection and correction of errors in PMU measurements’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 15751583.
    24. 24)
      • 30. Lab-Volt Electric power transmission line device model 8329’, https://www.labvolt.com/downloads/dsa8329.pdf, accessed 5 January 2016.
    25. 25)
      • 12. Du, Y., Liao, Y.: ‘Online estimation of power transmission line parameters, temperature and sag’. Proc. North American Power Symp., NAPS ‘11, Boston, MA, USA, 2011, pp. 17.
    26. 26)
      • 34. Weibel, M., Sattinger, W., Steinegger, U., et al: ‘Overhead line temperature monitoring pilot project’. Proc. 2006 CIGRÉ Session B2-311, 2006, pp. 18.
    27. 27)
      • 29. Brown, M., Biswal, M., Brahma, S., et al: ‘Characterizing and quantifying noise in PMU data’. in Proc. IEEE Power and Energy Society General Meeting, Boston, MA, USA, 2016, pp. 15.
    28. 28)
      • 28. Huang, Q., Shao, L., Li, N.: ‘Dynamic detection of transmission line outages using hidden Markov models’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 20262033.
    29. 29)
      • 7. Huang, Z., Kasztenny, B., Madani, V., et al: ‘Performance evaluation of phasor measurement systems’. Proc. IEEE Power and Energy Society General Meeting, Pittsburgh, PA, USA, 2008, pp. 17.
    30. 30)
      • 20. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    31. 31)
      • 10. Kim, I.D., Lee, J.R., Ko, Y.J., et al: ‘A study on the condition monitoring of transmission line by on-line circuit parameter measurement’, World Acad. Sci. Eng. Technol., 2013, 80, pp. 107111.
    32. 32)
      • 9. Wilson, R.E., Zevenbergen, G.A., Mah, D.L.: ‘Calculation of transmission line parameters from synchronized measurements’, Electric Mach. Power Syst., 1999, 27, (12), pp. 12691278.
    33. 33)
      • 4. Bockarjova, M., Andersson, G.: ‘Transmission line conductor temperature impact on state estimation accuracy’. Proc. IEEE Lausanne PowerTech, Lausanne, 2007, pp. 701706.
    34. 34)
      • 27. Zhou, N.: ‘A cross-coherence method for detecting oscillations’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 623631.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.0830
Loading

Related content

content/journals/10.1049/iet-gtd.2016.0830
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading