Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Power sharing in parallel inverters with different types of loads

Microgrids are used widely in electric power systems for enhancing the power system operation in both grid-connected and island modes. One of the main problems with microgrid operations in power systems is maintaining the microgrid voltage and frequency within permissible ranges and sharing microgrid loads among participating distribution generations (DGs) in an island mode. The droop control method will pose a degraded performance when feeder impedances of DGs are different. In this study, a new control method based on the virtual impedance and the compensating voltage is proposed and the simulation results show that this method combined with the droop control will offer a balanced power sharing among DGs with negligible voltage and frequency drops. Here both single-bus and multi-bus microgrids with distributed loads have been considered. The simulation results are based on the MATLAB Simulink which shows that the proposed method has a good load sharing performance among DGs with varying feeder impedances and droop gains.

References

    1. 1)
      • 26. Yao, W., Chen, M., Matas, J., et al: ‘Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing’, IEEE Trans. Ind. Electron., 2011, 58, pp. 576588.
    2. 2)
      • 19. Sao, C.K., Lehn, W.: ‘Control and power management of converter fed microgrids’, IEEE Trans. Power Syst., 2008, 23, pp. 10881098.
    3. 3)
      • 22. Vasquez, J.C., Guerrero, J.M., Luna, A., et al: ‘Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes’, IEEE Trans. Ind. Electron., 2009, 56, pp. 40884096.
    4. 4)
      • 6. Guerrero, J., Berbel, N., de Vicuna, L., et al: ‘Droop control method for the parallel operation of online uninterruptible power systems using resistive output impedance’. IEEE Applied Power Electronics Conf. and Exposition (APEC), 2005, pp. 17161722.
    5. 5)
      • 4. Marwali, M.N., Dai, M., Keyhani, A.: ‘Stability analysis of load sharing control for distributed generation systems’, IEEE Trans. Energy Convers., 2007, 22, (3), pp. 737745.
    6. 6)
      • 8. Katiraei, F., Iravani, M.R.: ‘Power management strategies for a microgrid with multiple distributed generation units’, IEEE Trans. Power Syst., 2006, 21, pp. 18211831.
    7. 7)
      • 5. Chandorkar, M., Divan, D.: ‘Decentralized operation of distributed ups systems’. International Conf. Power Electronics, Drives and Energy Systems for Industrial Growth, 1995, vol. 1, pp. 565571.
    8. 8)
      • 11. Zhong, Q.C.: ‘Robust droop controller for accurate proportional load sharing among inverters operated in parallel’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12811290.
    9. 9)
      • 24. Li, Y., Li, Y.W.: ‘Power management of inverter interfaced autonomous microgrid based on virtual frequency-voltage frame’, IEEE Trans. Smart Grid, 2011, 2, pp. 3040.
    10. 10)
      • 13. Paquette, A.D., Divan, D.M.: ‘Virtual impedance current limiting for inverters in microgrids with synchronous generators’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 16301638.
    11. 11)
      • 2. Vilathgamuwa, D.M., Loh, P.C., Li, Y.: ‘Protection of microgrids during utility voltage sags’, IEEE Trans. Ind. Electron., 2006, 53, pp. 14271436.
    12. 12)
      • 27. Yazdani, D., Bakhshai, A., Joos, G., et al: ‘A nonlinear adaptive synchronization technique for grid-connected distributed energy sources’, IEEE Trans. Power Electron., 2008, 23, pp. 21812186.
    13. 13)
      • 29. Lee, S.J., Kim, H., Sul, S.K., et al: ‘A novel control algorithm for static series compensators by use of PQR instantaneous power theory’, IEEE Trans. Power Electron., 2004, 19, pp. 814827.
    14. 14)
      • 23. He, J., Li, Y.W., Guerrero, J.M.: ‘An islanding microgrid power sharing approach using enhanced virtual impedance control scheme’, IEEE Trans. Power Electron, 2013, 28, (11), pp. 52725282.
    15. 15)
      • 12. Guerrero, J., de Vicuna, L., Castilla, J.M., et al: ‘A wireless controller to enhance dynamic performance of parallel inverter in distributed generation systems’, IEEE Trans. Power Electron., 2004, 19, pp. 12051213.
    16. 16)
      • 31. Savaghebi, M., Jalilian, A., Vasquez, J.C., et al: ‘Secondary control scheme for voltage unbalanced compensation in an islanded droop-controlled microgrid’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 797807.
    17. 17)
      • 7. Guerrero, J., de Vicuna, L., Matas, J., et al: ‘Output impedance design of parallel-connected ups inverters with wireless load-sharing control’, IEEE Trans. Ind. Electron., 2005, 52, (4), pp. 11261135.
    18. 18)
      • 17. Lee, C.T., Chu, C.-C., Cheng, P.-T.: ‘A new droop control method for the autonomous operation of distributed energy resources interface converters’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 19801993.
    19. 19)
      • 42. He, J., Li, Y.W.: ‘An enhanced microgrid load demand sharing strategy’, IEEE Trans. Power Electron., 2012, 27, (9), pp. 39843995.
    20. 20)
      • 21. Lee, T.L., Cheng, P.T.: ‘Design of a new cooperative harmonic filtering strategy for distributed generation interface converters in an islanding network’, IEEE Trans. Power Electron, 2007, 22, pp. 19191927.
    21. 21)
      • 18. Sao, C.K., Lehn, W.: ‘Autonomous load sharing of voltage source converters’, IEEE Trans. Power Deliv., 2005, 20, pp. 10091016.
    22. 22)
      • 16. Diaz, G., Gonzalez-Moran, C., Gomez-Aleixandre, J., et al: ‘Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids’, IEEE Trans. Power Syst., 2010, 25, pp. 489496.
    23. 23)
      • 35. Guerrero, J.M., Loh, P., Chandorkar, M.: ‘Advanced control architectures for intelligent microgrids−part I: decentralized and hierarchical control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12541262.
    24. 24)
      • 34. Guerrero, J.M., Vasquez, J.C., Matas, J.: ‘Hierarchical control of droop-controlled AC and DC microgrids – A general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    25. 25)
      • 41. Mahmood, H., Michaelson, D., Jiang, J.: ‘Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 16051617.
    26. 26)
      • 3. Marwali, M.N., Dai, M., Keyhani, A.: ‘Robust stability analysis of voltage and current control for distributed generation systems’, IEEE Trans. Energy Convers., 2006, 21, (2), pp. 516526.
    27. 27)
      • 37. Nasirian, V., Shafiee, Q., Guerrero, J.M., et al: ‘Droop-free distributed control for AC microgrids’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 16001617.
    28. 28)
      • 28. McGrath, B.P., Holmes, D.G., Galloway, J.J.H.: ‘Power converter line synchronization using a discrete fourier transform (DFT) based on a variable sample rate’, IEEE Trans. Power Electron., 2005, 20, pp. 877884.
    29. 29)
      • 38. Chandorkar, M.C., Divan, D.M., Adapa, R.: ‘Control of parallel connected inverters in standalone ac supply systems’, IEEE Trans. Ind. Appl., 1993, 29, (1), pp. 136143.
    30. 30)
      • 39. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans.Power Electron., 2012, 27, pp. 47344749.
    31. 31)
      • 25. Wu, T., Liu, Z., Liu, J., et al: ‘A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids’, IEEE Trans. Power Electron., 2016, 31, (8), pp. 55875603.
    32. 32)
      • 9. Azim, M.I., Hossain, M.A., Hossain, M.J., et al: ‘Effective power sharing approach for islanded microgrids’. Smart Grid Technologies – Asia (ISGT ASIA), 2015 IEEE Innovative, Bangkok, 2015, pp. 14.
    33. 33)
      • 30. Yazdani, A., Iravani, R.: ‘A unified dynamic model and control for the voltage source converter under unbalanced grid conditions’, IEEE Trans. Power Deliv., 2006, 21, pp. 16201629.
    34. 34)
      • 32. Vanthournout, K., Brabandere, K.D., Haesen, E., et al: ‘Agora: distributed tertiary control of distributed resources’. Proc. 15th Power Systems Computation Conf., 2005, pp. 17.
    35. 35)
      • 20. Marwali, M.N., Jung, J.W., Keyhani, A.: ‘Control of distributed generation systems–Part II: Load sharing control’, IEEE Trans. Power Electron., 2004, 19, pp. 15511561.
    36. 36)
      • 40. De Brabandere, K.: ‘Voltage and frequency droop control in low voltage grids by distributed generators with inverter front-end’. Ph.D. Dissertation, Faculteit Ingenieurswetenschappen, K.U. Leuven, Belgium, 2006.
    37. 37)
      • 15. Katiraei, F., Iravani, R., Hatziargyriou, N., et al: ‘Microgrids management’, IEEE Trans. Power Energy Mag., 2008, 6, pp. 5465.
    38. 38)
      • 1. Majumder, R.: ‘Modeling stability analysis and control of microgrid’. Ph. D. thesis, Queensland university of technology, February 2010.
    39. 39)
      • 33. Setiabudy, R., Hartono, B.,: ‘Development energy management strategy to optimize battery operation in islanding microgrid using zero one integer programming’. , 2015 Int. Conf. on Quality in Research (QiR), Lombok, 2015, pp. 125128.
    40. 40)
      • 36. Zhang, Y., Xie, L., Ding, Q.: ‘Interactive control of coupled microgrids for guaranteed system-wide small signal stability’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 10881096.
    41. 41)
      • 10. Reza, M., Sudarmadi, D., Viawan, F.A., et al: ‘Dynamic stability of power systems with power electronic interfaced DG’. Power systems Conf. and Exposition, PSCE06, IEEE PES, 2006, pp. 14231428.
    42. 42)
      • 14. Kim, J., Guerrero, J.M., Rodriguez, P., et al: ‘Mode adaptive droop control with virtual output impedances for an inverter-based flexible AC microgrid’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 689701.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.0570
Loading

Related content

content/journals/10.1049/iet-gtd.2016.0570
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address