http://iet.metastore.ingenta.com
1887

Design considerations of superconducting fault current limiters for power system stability enhancement

Design considerations of superconducting fault current limiters for power system stability enhancement

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study identifies the type and size of the optimal shunt limiting impedance for superconducting fault current limiter (SFCL). Since the shunt impedance has been widely categorised to be either inductive or resistive element depending on the type of limiting impedance, the proposed design considerations will significantly affect the transient response and system stability. Therefore, the presented problem formulation optimises the design of SFCL by allowing the limiting shunt impedance to combine both resistive and inductive elements with an optimal ratio to tackle the security and stability challenges while functioning the SFCL. The optimisation framework is developed based on time-domain simulation and takes into account the transient stability indices to size the limiting components of SFCLs given that the main operational requirements such as fault current level and voltage limits are met. Non-dominated sorting genetic algorithm II is used to find the Pareto fronts for different types of SFCLs. The optimisation and time-domain simulation results demonstrate great enhancement in the performance of both SFCLs when the optimal ratio between the resistive and inductive elements is chosen for the shunt limiting impedance resulted in improving the transient response and system stability.

References

    1. 1)
      • 1. CIGRE WG A3.23: ‘Application and feasibility of fault current limiters in power systems’, CIGRE Technical Brochure, No. 497, June 2012.
    2. 2)
      • 2. Alaraifi, S., El Moursi, M.S., Zeineldin, H.H.: ‘Optimal allocation of HTS-FCL for power system security and stability enhancement’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 47014711.
    3. 3)
      • 3. Morandi, A.: ‘Fault current limiter: an enabler for increasing safety and power quality of distribution networks’, IEEE Trans. Appl. Supercond., 2013, 23, (6), pp. 56046085604608.
    4. 4)
      • 4. Alaraifi, S.M., El Moursi, M.S.: ‘Hybrid HTS-FCL configuration with adaptive voltage compensation capability’, IEEE Trans. Appl. Supercond., 2014, 24, (6), pp. 18.
    5. 5)
      • 5. El-Moursi, M.S.: ‘Fault ride through capability enhancement for self-excited induction generator-based wind park by installing fault current limiters’, Proc. IET Renew. Power Gener., 2011, 5, (4), pp. 269280.
    6. 6)
      • 6. Sung, B.-C., Park, D.-K., Park, J.-W., et al: ‘Study on a series resistive SFCL to improve power system transient stability: modeling, simulation, and experimental verification’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 24122419.
    7. 7)
      • 7. Alaraifi, S., Moawwad, A., El Moursi, M.S., et al: ‘Voltage booster schemes for fault ride-through enhancement of variable speed wind turbines’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 10711081.
    8. 8)
      • 8. Llambes, J.-C.H., Hazelton, D.W., Weber, C.S.: ‘Recovery under load performance of 2nd generation HTS superconducting fault current limiter for electric power transmission lines’, IEEE Trans. Appl. Supercond., 2009, 19, (3), pp. 19681971.
    9. 9)
      • 9. Hyun, O.-B., Yim, S.-W., Yu, S.-D., et al: ‘Long-term operation and fault tests of a 22.9 kV hybrid SFCL in the KEPCO test grid’, IEEE Trans. Appl. Supercond., 2011, 21, (3), pp. 21312134.
    10. 10)
      • 10. Hyun, O.-B., Park, K.-B., Sim, J., et al: ‘Introduction of a hybrid SFCL in KEPCO grid and local points at issue’, IEEE Trans. Appl. Supercond., 2009, 19, (3), pp. 19461949.
    11. 11)
      • 11. Lee, B.W., Park, K.B., Sim, J., et al: ‘Design and experiments of novel hybrid type superconducting fault current limiters’, IEEE Trans. Appl. Supercond., 2008, 18, (2), pp. 624627.
    12. 12)
      • 12. Abbott, S.B., Robinson, D.A., Perera, S., et al: ‘Simulation of HTS saturable core-type FCLs for MV distribution systems’, IEEE Trans. Power Deliv., 2006, 21, (2), pp. 10131018.
    13. 13)
      • 13. Alaraifi, S., El Moursi, M.S., Zeineldin, H.: ‘Transient analysis on different types of super conducting fault current limiters’. PowerTech (POWERTECH), 2013 IEEE Grenoble, 16–20 June 2013, pp. 16.
    14. 14)
      • 14. El Moursi, M.S., Hegazy, R.: ‘Novel technique for reducing the high fault currents and enhancing the security of ADWEA power system’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 140148.
    15. 15)
      • 15. Teng, J.-H., Lu, C.-N.: ‘Optimum fault current limiter placement with search space reduction technique’, IET. Gener. Transm. Distrib., 2010, 4, (4), pp. 485494.
    16. 16)
      • 16. Sung, B.C., Park, D.K., Park, J.-W., et al: ‘Study on optimal location of a resistive SFCL applied to an electric power grid’, IEEE Trans. Appl. Supercond., 2009, 19, (3), pp. 20482052.
    17. 17)
      • 17. Didier, G., Leveque, J., Rezzoug, A.: ‘A novel approach to determine the optimal location of SFCL in electric power grid to improve power system stability’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 978984.
    18. 18)
      • 18. Causebrook Atkinson, D.J., Jack, A.G.: ‘Fault ride-through of large wind farms using series dynamic braking resistors (March 2007)’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 966975.
    19. 19)
      • 19. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Wind farms fault ride through using DFIG with new protection scheme’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 242254.
    20. 20)
      • 20. El Moursi, M.S., Goweily, K., Kirtley, J.L., et al: ‘Application of series voltage boosting schemes for enhanced fault ridethrough performance of fixed speed wind turbines’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 6171.
    21. 21)
      • 21. Radmanesh, H., Fathi, H., Gharehpetian, G.B.: ‘Series transformer-based solid state fault current limiter’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 19831991.
    22. 22)
      • 22. Radmanesh, H., Fathi, S.H., Gharehpetian, G.B., et al: ‘Bridge-type solid-state fault current limiter based on AC/DC reactor’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 200209.
    23. 23)
      • 23. Fereidouni, A.R., Vahidi, B., Hosseini Mehr, T.: ‘The impact of solid state fault current limiter on power network with wind-turbine power generation’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 11881196.
    24. 24)
      • 24. Ueda, T., Morita, M., Arita, H., et al: ‘Solid-state current limiter for power distribution system’, IEEE Trans. Power Deliv., 1993, 8, (4), pp. 17961801.
    25. 25)
      • 25. Kundur, P.: ‘Power system stability and control’ (McGraw Hill Inc., 1994).
    26. 26)
      • 26. IEEE Recommended Practice for Excitation System Models for Power System Stability Studies’, IEEE Std 421.5-2005 (Revision of IEEE Std 421.5-1992), pp. 0_1,85, 2006.
    27. 27)
      • 27. Sadi, M.A.H., Ali, M.H.: ‘A fuzzy logic controlled bridge type fault current limiter for transient stability augmentation of multi-machine power system’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 602611.
    28. 28)
      • 28. Sadi, M.A.H., Ali, M.H.: ‘Transient stability enhancement by bridge type fault current limiter considering coordination with optimal reclosing of circuit breakers’, Electr. Power Syst. Res. , 2015, 124, pp. 160172.
    29. 29)
      • 29. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
    30. 30)
      • 30. Singh, A.K., Pal, B.C.: ‘IEEE PES task force on benchmark systems for stability controls report on the 68-bus, 16-machine, 5-area system’, Version 3.3, 3 December 2013. Available at http://www.sel.eesc.usp.br/ieee/index.htm.
    31. 31)
      • 31. Bandal, V., Bandyopadhyay, B.: ‘Robust decentralised output feedback sliding mode control technique-based power system stabiliser (PSS) for multimachine power system’, IET Control Theory Appl., 2007, 1, (5), pp. 15121522.
    32. 32)
      • 32. Sauer, P.W., Pai, M.A.: ‘Power system dynamics and stability’ (Prentice Hall, Upper Saddle River, NJ, 1998).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.0549
Loading

Related content

content/journals/10.1049/iet-gtd.2016.0549
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address