Your browser does not support JavaScript!

access icon free Lifetime estimation and diagnosis of XLPE used in HV insulation cables under thermal ageing: arithmetic sequences optimised by genetic algorithms approach

The arithmetic sequences optimised by genetic algorithms have been applied in the lifetime estimation and diagnosis of cross-linked polyethylene (XLPE) high-voltage insulation under thermal ageing. To know an idea of the cable capacity to work without failure, it is necessary to predict the future state of the electrical insulation. If the estimation is very good, the authors can start to schedule maintenance tasks of electrical system and find preventive solutions in early time. A large amount of money can be saved if they take appropriate actions. The developed model gives results in good agreement with the experimental results, with an acceptable error margin. The authors also applied the same models in the diagnosis of the high-voltage insulation to plan the preventive maintenance actions. The decision is taken from the carried out previous experimental measurements of XLPE properties. The developed approaches are able to make the diagnosis and the classification of the insulation state. The results of modelling, prediction and diagnosis presented in this work demonstrate the effectiveness of the used method.


    1. 1)
      • 6. Ciuprina, F., Teissèdre, G., Filippini, J.C.: ‘Polyethylene crosslinking and water treeing’, Polymer, 2001, 42, pp. 78417846.
    2. 2)
      • 8. Sarathi, R., Das, S., Anil Kumar, C.R., et al: ‘Analysis of failure crosslinked polyethylene cables because of electrical treeing: a physicochemical approach’, J. Appl. Polymer Sci., 2004, 92, pp. 21692178.
    3. 3)
      • 4. Osozawa, K.: ‘500 kV aluminium-sheathed XLPE cable in 96 m vertical shaft’, IEEE Power Eng. Soc. Winter Meeting, 2000, 1, pp. 670673.
    4. 4)
      • 2. Sato, T., Muraki, K., Sato, N., et al: ‘Recent technical trends of 500 kV XLPE cable’, IEEE 3rd International conference on Power Cable and Accessories 10kV-500 kV, London, UK, November, 1993, pp. 5963.
    5. 5)
      • 14. I.E.C. 540: ‘Test methods for insulation and sheaths of rigid and flexible electrical cables (elastomeric and thermoplastic blends)’, 1983,
    6. 6)
      • 9. Liu, F., Huang, X., Wang, J., et al: ‘Insulation aging diagnosis of XLPE power cables under service conditions’. IEEE International Conf. on Condition Monitoring and Diagnosis, Bali, Indonesia, 23–27 September 2012, pp. 647650.
    7. 7)
      • 1. Toledo, T.: ‘Calculating electrical stress in the insulations establishing non linear semiconductor materials’. PhD thesis, Central School of Lyon, France, 2004 (in French).
    8. 8)
      • 22. Fallou, B.: ‘Assessment and diagnostic methods for estimating life and detect failures of electrical equipment’, Bull. Dir. étud. rech., Sér. B Réseaux électr. matér. électr., 1988, Series B, (4), pp. 4559.
    9. 9)
      • 18. Zeriab Es-Sade, M.: ‘Contribution to the global optimisation – determinist approach and stochastic and application’. PhD thesis, Mohammed V University, Rabat, Morocco, November 2009 (in French).
    10. 10)
      • 12. Bessissa, L., Boukezzi, L., Mahi, D.: ‘A fuzzy logic approach to model and predict HV cable insulation behaviour under thermal aging’, Acta Polytech. Hung., 2014, 11, (3), pp. 107123.
    11. 11)
      • 5. Gross, L.H., Furno, J.S., Reid, C.G., et al: ‘XLPE materials for extruded high/extra-high voltage transmission cables’. IEEE Conf. Record of International Symp. on Electrical Insulation, Arlington, VA, USA, June 7–10 1998, pp. 538542.
    12. 12)
      • 11. Boukezzi, L., Boubakeur, A.: ‘Use of neural network algorithms in prediction of XLPE HV insulation properties under thermal aging’, Adv. Intell. Soft Comput., 2013, 224, pp. 5361.
    13. 13)
      • 10. Kachler, A.J.: ‘Diagnostic and monitoring-technology for large power transformer’. CIGRE SC 12 Colloquium, Sidney, Australia, 1997.
    14. 14)
      • 23. IDA 200: ‘Insulation diagnostics system’, GE Energy Services, Programma Products, 2003.
    15. 15)
      • 7. Montanari, G.C., Teyssedre, G., Laurent, C., et al: ‘Charging of PE and XLPE specimens: effect of antioxidant and cross-linking on luminescence features, space charge and conduction current measurements’. IEEE Annual Report Conf. on Electrical Insulation and Dielectric Phenomena, 2004, pp. 7376.
    16. 16)
      • 15. Boukezzi, L.: ‘Influence of thermal aging on the properties of cross linked polyethylene insulation used in high voltage cables’. PhD thesis, ENP of Algiers, Algeria, June 2007 (in French).
    17. 17)
      • 20. Fallou, B.: ‘Characteristics of solid insulation, measurement methods, values and meaning’ (Technical Engineer Publishing, D214, 1970).
    18. 18)
      • 21. Fallou, B.: ‘Specific behaviour of insulating materials subjected to various stresses (heat, electric field, radiation)’, R.G.E., 1985, 10, pp. 756767.
    19. 19)
      • 16. I.E.C. 502: ‘Power cables insulated with solid dielectrics for rated voltages from 1 kV to 30 kV’ (Edition, 1997).
    20. 20)
      • 17. Chaari, T.: ‘A genetic algorithm for robust organization: application to the hybrid flow shop’. PhD thesis, Valenciennes University, France, March 2010 (in French).
    21. 21)
      • 19. Fallou, B.: ‘New rules for the determination of materials thermal endurance’, Revue de Génie Electrique, 1974, 83, (7/8), pp. 445452.
    22. 22)
      • 13. Boukezzi, L., Boubakeur, A.: ‘Prediction of mechanical properties of XLPE cable insulation under thermal aging: neural network approach’, IEEE Trans. Dielectrics Electr. Insul., 2013, 20, (6), pp. 21252134.
    23. 23)
      • 3. Kaminaga, K., Ichihara, M., Jinno, M., et al: ‘Development of 500 kV XLPE cables’, Electr. Eng. Jpn, 1997, 118, (1), pp. 2839.

Related content

This is a required field
Please enter a valid email address