http://iet.metastore.ingenta.com
1887

Multi-contingency TSCOPF based on full-system simulation

Multi-contingency TSCOPF based on full-system simulation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Transient stability constrained optimal power flow (TSCOPF) is a non-linear optimisation problem used to perform economic dispatches while ensuring TS. This study proposes a multi-contingency TSCOPF model that retains the dynamics of all generators and includes a transient synchronous generator fourth-order dq-axis model. A program is developed that automatically reads the system data from standard files, builds the multiple-contingency TSCOPF model on a high-level modelling system and solves it using a non-heuristic interior point algorithm. This approach facilitates the application of the model to a variety of systems and scenarios. A TSC based on the speed deviation instead of the rotor angle is proposed. Results obtained on several standard systems are shown. The proposed method is applied to the northwest Spanish transmission system to obtain an optimised dispatch that ensures TS after any of a number of faults, and to assess the economic impact of fault-clearing times at different substations.

References

    1. 1)
      • 1. Xu, Y., Dong, Z.Y., Xu, Z., et al: ‘Power system transient stability-constrained optimal power flow: a comprehensive review’. 2012 IEEE Power and Energy Society General Meeting, 2012, pp. 17.
    2. 2)
      • 2. Moyano, C.F., Castronuovo, E.: ‘Non-linear mathematical programming applied to electric power systems stability’, in: ‘Optimization advances in electric power systems’ (Nova Science Publishers, Inc., 2009).
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 17. ‘A novel margin sensitivity based method for transient stability constrained optimal power flow’. Available at http://www.sciencedirect.com/science/article/pii/S0378779613002940, accessed: 23 May 2016.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 22. Layden, D., Jeyasurya, B.: ‘Integrating security constraints in optimal power flow studies’. IEEE Power Engineering Society General Meeting, 2004, 2004, vol. 1, pp. 125129.
    23. 23)
    24. 24)
    25. 25)
      • 25. ‘IEEE guide for synchronous generator modeling practices and applications in power system stability analyses’. IEEE Std. 1110-2002 Revis. IEEE Std. 1110-1991, 2003, p. 0_1-72.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 31. ‘GAMS Home Page’. Available at https://www.gams.com/, accessed: 05 June 2016.
    32. 32)
      • 32. Grainger, J.J., Stevenson, W.D.Jr.: ‘Power system analysis’ (McGraw-Hill Science/Engineering/Math, New York, 1994, 1st edn.).
    33. 33)
      • 33. Zhu, J.: ‘Optimization of power system operation’ (John Wiley & Sons, 2009).
    34. 34)
      • 34. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill Professional, 1994).
    35. 35)
      • 35. Anderson, P.M., Fouad, A.A.: ‘Power system control and stability’ (Wiley-IEEE Press, 2002, 2nd edn.).
    36. 36)
      • 36. Siemens TI, Ed.: ‘BOSL controllers – standard 1’. 2008.
    37. 37)
      • 37. ‘IPOPT’ Availableat https://www.projects.coin-or.org/Ipopt, accessed: 23 May 2016.
    38. 38)
      • 38. Wächter, A.: ‘An interior point algorithm for large-scale nonlinear optimization with applications in process engineering’, PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 2002.
    39. 39)
      • 39. ‘IEEE 118 bus test case data’. Available at http://www.motor.ece.iit.edu/data/JEAS_IEEE118.doc, accessed: 23 May 2016.
    40. 40)
      • 40. ‘Power flow cases – Illinois Center for a Smarter Electric Grid (ICSEG)’..
    41. 41)
      • 41. ‘TEST SYSTEM REPORT development of a comprehensive power system simulation laboratory’. Available at http://www.itee.uq.edu.au/pssl/drupal7_with_innTheme/?q=node/374, accessed: 23 May 2016.
    42. 42)
      • 42. UCTE Union for the Coordination of Transmission of Energy: ‘Final Report – System Disturbance on 4 November 2006’. 2007.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.0355
Loading

Related content

content/journals/10.1049/iet-gtd.2016.0355
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address