© The Institution of Engineering and Technology
Research of switching operation transient electromagnetic field in substations is fundamental to the protection of mine monitoring systems against electromagnetic interference. Three models, which are the equivalent circuit of switching on/off inductive load, transient radiation of short dipole, and transmission line of long cable, are built for numerical analysis. The results indicate that switching operation does not produce transient pulse when the breaking angle is close to 90°. Electric fields are the primary form of transient pulse radiation, and the effect of the magnetic field on the environment can be ignored. Long cables are naturally resistant to differential mode transient pulse propagation, but the effect of common mode transient pulse cannot be ignored. Energy distribution of transient pulse in different frequency ranges is calculated by using theParserval equation. Furthermore, the measurement frequencies and the instruments used in the coal mine are determined, and on-site data is then obtained. Measurement results show that switching operation may produce a series of transient pulses, causing the electric field to grow larger than before. Specifically, conducted emissions have large impacts on the monitoring circuitry of the mine equipment, causing the mine monitoring system to frequently record erroneous data and omit information.
References
-
-
1)
-
1. Liu, K.Y., Siew, S.H., Stewart, R.W., et al: ‘High-speed distributed acquisition network for fast transient measurement’, IET Gener. Transm. Distrib., 2014, 8, (7), pp. 1254–1262 (doi: 10.1049/iet-gtd.2013.0521).
-
2)
-
2. Au, M., Agba, B.L., Gagnon, F.: ‘A model of electromagnetic interferences induced by corona discharges for wireless channels in substation environments’, IEEE Trans. Electromagn. Compat., 2015, 57, (3), pp. 522–531 (doi: 10.1109/TEMC.2015.2402638).
-
3)
-
3. Rao, M.M., Singh, B.P., Thomas, M.J.: ‘Transients induced on control cables and secondary circuit of instrument transformers in a GIS during switching operations’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 1505–1513 (doi: 10.1109/TPWRD.2007.901292).
-
4)
-
4. Zhang, X.M., Zhao, Z.H., Guo, F.: ‘Electromagnetic interference analysis and its suppression of EMC testing system’, Trans. China Electrotech. Soc., 2010, 25, (10), pp. 14–17.
-
5)
-
5. Guillaume, A., Xavier, B., Jean, P.P.: ‘A reduction modeling method to assess the electromagnetic emission of multiconductor transmission lines’, Comptes Rendus Phys., 2009, 10, (1), pp. 83–90 (doi: 10.1016/j.crhy.2008.12.002).
-
6)
-
6. Hector, B.S.S., Vicente, F.R.: ‘Reduction of low voltage power cables electromagnetic field emission in MV/LV substations’, Electr. Power Syst. Res., 2008, 78, (6), pp. 1080–1088 (doi: 10.1016/j.epsr.2007.09.006).
-
7)
-
7. Wang, C.S., Li, P., Huang, B.B.: ‘An interpolation algorithm for time-domain simulation of power electronics circuit considering multiple switching events’, Trans. China Electrotech. Soc., 2010, 25, (6), pp. 83–88.
-
8)
-
8. Teixeira, T., Hasan, S.F.: ‘Assessing electromagnetic radiation in our environment’, IEEE Potentials, 2016, 35, (2), pp. 22–25 (doi: 10.1109/MPOT.2014.2309704).
-
9)
-
9. Manassas, A., Boursianis, A., Samaras, T., et al: ‘Continuous electromagnetic radiation monitoring in the environment: analysis of the results in Greece’, Radiat. Prot. Dosim., 2012, 151, (3), pp. 437–442 (doi: 10.1093/rpd/ncs028).
-
10)
-
10. Zheng, C.X., Li, Y.M., Yang, N.: ‘Equivalent circuit model of electromagnetic interference on shielding enclosures for secondary equipments in substation’, High Volt. Appar., 2011, 47, (11), pp. 56–60.
-
11)
-
11. Kovačević, A.M., Despotović, D.D., Stanković, K.D., et al: ‘Uncertainty evaluation of the conducted emission measurements’, Nucl. Technol. Radiat. Prot., 2013, 28, (2), pp. 182–190 (doi: 10.2298/NTRP1302182K).
-
12)
-
12. Kovačević, A.M., Kovačević, A.V., Stanković, K.D., et al: ‘The combined method for uncertainty evaluation in electromagnetic radiation measurement’, Nucl. Technol. Radiat. Prot., 2014, 29, (4), pp. 279–284 (doi: 10.2298/NTRP1404279K).
-
13)
-
13. Loh, T.H., Alexander, M.J.: ‘A method to minimize emission measurement uncertainty of electrically large EUTs in GTEM cells and FARs above 1 GHz’, IEEE Trans. Electromagn. Compat., 2006, 48, (4), pp. 634–640 (doi: 10.1109/TEMC.2006.884541).
-
14)
-
14. Prokopov, A.V.: ‘An algorithm for deriving the measurement equation and estimation the methodological error(uncertainty) in the result for indirect measurements’, Meas. Tech., 2005, 48, (4), pp. 346–351 (doi: 10.1007/s11018-005-0147-4).
-
15)
-
15. Mariscotti, A.: ‘Measurement procedures and uncertainty evaluation for electromagnetic radiated emissions from large-power electrical machinery’, IEEE Trans. Instrum. Meas., 2007, 56, (6), pp. 2452–2463 (doi: 10.1109/TIM.2007.908351).
-
16)
-
16. Semenov, A., Kuznetsov, N.: ‘An analysis of the results of monitoring the quality of electric power in an underground mine’, Meas. Tech., 2014, 57, (4), pp. 417–420 (doi: 10.1007/s11018-014-0470-8).
-
17)
-
17. Neamt, L., Horgos, M., Chiver, O., et al: ‘Estimation of power cables magnetic fields in mine tunnels’, J. Sustain. Energy, 2011, 2, (4), pp. 1–5.
-
18)
-
18. Sun, J.P., Chen, H., Li, Q.Q.: ‘Radiated electromagnetic fields of surge current in coal mine’, Trans. Beijing Inst. Technol., 2011, 31, (11), pp. 1360–1364.
-
19)
-
19. Chen, X., Lu, J.G., Xu, H.: ‘Disturbance rejection degree and countermeasures to the disturbance of electric fast transient pulse caused by relays’, Relay, 2001, 29, (10), pp. 70–73.
-
20)
-
20. Kraus, J.D., Marhefka, R.J.: ‘Antennas for all applications’ (McGraw-Hill, New York, 2002, 3rd edn.).
-
21)
-
21. Feng, D.W.: ‘Model for radiation emission of short dipoles of electrical fast transient burst’, Chin. J. Radio Sci., 2010, 25, (5), pp. 995–999.
-
22)
-
22. : ‘IEEE recommended practice on surge voltage in low-voltage AC power circuits’, 1991.
-
23)
-
23. : ‘Near field probes HZ530 manual’, 1995.
-
24)
-
24. Feng, D.W.: ‘Non-contact measuring methods of transient conduction disturbances in mine’, Acta Metrologica Sinica, 2012, 32, (4), pp. 289–295.
-
25)
-
26)
-
26. Salicone, S.: ‘Measurement uncertainty: an approach via the mathematical theory of evidence’ (Springer, New York, 2007).
-
27)
-
27. Bittera, M., Smiesko, V., Kovac, K., et al: ‘Directional properties of the Bilog antenna as a source of radiated electromagnetic interference measurement uncertainty’, IET Microw. Antennas Propag., 2010, 4, (10), pp. 1469–1474 (doi: 10.1049/iet-map.2009.0187).
-
28)
-
28. Rohde & Schwarz GmbH & Co. KG: ‘R&S HE300 active directional antenna R&S HE300UK upgrade kitmanual’ (Rohde & Schwarz GmbH & Co. KG, Germany, 2010).
-
29)
-
29. Bronaugh, E.L., Osburn, J.D.M.: ‘A process for the analysis of the physics of measurement and determination of uncertainty of EMC test procedures’. IEEE Int. Symp. Electromagnetic Compatibility, Santa Clara, CA, August 1996, pp. 245–249.
-
30)
-
31)
-
31. Rohde & Schwarz GmbH & Co. KG: ‘R&S FSP spectrum analyzer operating manual’ (Rohde & Schwarz GmbH & Co. KG, Germany, 2009).
-
32)
-
32. Rohde & Schwarz GmbH & Co. KG: ‘R&S FSP spectrum analyzer datasheet’ (Rohde & Schwarz GmbH & Co. KG, Germany, 2009).
-
33)
-
33. Agilent Technologies, Inc.: ‘Agilent 6000 series oscilloscopes service guide’ (Agilent Technologies, Inc, Malaysia, 2007).
-
34)
-
34. Agilent Technologies, Inc.: ‘Agilent technologies6000 series oscilloscopes data sheet’ (Agilent Technologies, Inc, USA, 2006).
-
35)
-
35. Agilent Technologies, Inc.: ‘Agilent 6000 series oscilloscope user's guide’ (Agilent Technologies, Inc, Malaysia, 2006, 4th edn.).
-
36)
-
36. Shi, Y.B., Yu, M., Li, D.: ‘Analysis and evaluation of uncertainty of pulse signal measurement result by oscilloscope’, Foreign Electron. Meas. Technol., 2016, 35, (3), pp. 50–53.
-
37)
-
37. : ‘Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertain ties, statistics and limit modeling – Measurement instrumentation uncertainty’, 2011.
-
38)
-
38. Liang, Z.C., Fu, J.B., Li, F.T., et al: ‘Electrical fast transient burst immunity of protection equipment’, Autom. Electr. Power Syst., 2003, 27, (6), pp. 65–68.
-
39)
-
39. Ma, F.Y.: ‘EFT_B interference transmission model and method of anti-interference in a coal mine monitoring substation’, Min. Sci. Technol., 2010, 20, (3), pp. 391–394.
-
40)
-
40. Feng, L.M., Xie, Y.Y., Chen, Z.M., et al: ‘Study on the EMI filters to EFT/B tests in power converters’. Twenty-First Annual IEEE Applied Power Electronics Conf. and Exposition, APEC '06, 2006, pp. 1607–1610.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.0292
Related content
content/journals/10.1049/iet-gtd.2016.0292
pub_keyword,iet_inspecKeyword,pub_concept
6
6