© The Institution of Engineering and Technology
Widearea power system stabiliser (WAPSS) has been proved to be an effective method to damp interarea lowfrequency oscillations by using synchronisedphasor measurements. However, negative interactions among the WAPSSs may happen when they are designed separately. The conventional modelbased coordination design methods are difficult to get good damping performance because model identification of the highorder, nonlinear and timevarying power system is difficult. In this study, an improved modelfree adaptive control (MFAC) algorithm is proposed for WAPSS coordination design. With the consideration of the interactions among the controllers and system noises, a novel decoupled multipleinput–multipleoutput power system description for WAPSS coordination design are given. The MFAC control law and adaption law for each subsystem are improved to satisfy the controller coordination design requirements. The closedloop system stability and parameter settings of the improved MFAC algorithm are also analysed from a global perspective. Compared with modelbased methods, the proposed MFAC algorithm can ensure the controllers cooperate with each other and perform well under various operating conditions without tedious system modelling. The effectiveness of the proposed controllers is tested on an interconnected largescale power system in China. An MFACWAPSS control system for field application is also presented in this study to validate its practicality.
References


1)

2. Jafarian, M., Ranjbar, A.M.: ‘The impact of wind farms with doubly fed induction generators on power system electromechanical oscillations’, Renew. Energy, 2013, 50, (1), pp. 780–785 (doi: 10.1016/j.renene.2012.08.033).

2)

2. Kundur, P.: ‘Power system stability and control’ (McGrawHill Press, New York, 1994).

3)

3. Molina, D., Venayagamoorthy, G.K., Liang, J., et al: ‘Intelligent local area signals based damping of power system oscillations using virtual generators and approximate dynamic programming’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 498–508 (doi: 10.1109/TSG.2012.2233224).

4)

6. Kamwa, I., Grondin, R., Hebert, Y.: ‘Widearea measurement based stabilizing control of large power systems: a decentralized/hierarchical approach’, IEEE Trans. Power Syst., 2001, 16, (1), pp. 136–153 (doi: 10.1109/59.910791).

5)

17. Eriksson, R., Sodder, L.: ‘Widearea measurement systembased subspace identification for obtaining linear models to centrally coordinate controllable devices’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 988–997 (doi: 10.1109/TPWRD.2010.2094628).

6)

6. Xie, X., Lu, C.: ‘Optimization and coordination of widearea damping controls for enhancing the transfer capability of interconnected power systems’, Electr. Power Syst. Res., 2008, 78, (6), pp. 1099–1108 (doi: 10.1016/j.epsr.2007.09.002).

7)

7. Ye, H., Liu, Y.: ‘Design of model predictive controllers for adaptive damping of interarea oscillations’, Int. J. Electr. Power Energy Syst., 2013, 45, (1), pp. 509–518 (doi: 10.1016/j.ijepes.2012.09.023).

8)

8. Wei, Q., Venayagamoorthy, G.K., Harley, R.G.: ‘Optimal widearea monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices’, Neural Netw., 2008, 21, (2), pp. 466–475.

9)

9. Wei, Q., Venayagamoorthy, G.K., Harley, R.G.: ‘DHPbased widearea coordinating control of a power system with a large wind farm and multiple FACTS devices’. Proc. Int. Conf. Neural Networks, Orlando, USA, August 2007, pp. 2093–2098.

10)

10. Liu, Y., Gao, Y., Tong, S., et al: ‘Fuzzy approximationbased adaptive backstepping optimal control for a class of nonlinear discretetime systems with deadzone’, IEEE Trans. Fuzzy Syst., 2016, 24, (1), pp. 16–28 (doi: 10.1109/TFUZZ.2015.2418000).

11)

11. Liu, Y., Tong, S.: ‘Adaptive fuzzy control for a class of nonlinear discretetime systems with backlash’, IEEE Trans. Fuzzy Syst., 2014, 22, (5), pp. 1359–1365 (doi: 10.1109/TFUZZ.2013.2286837).

12)

12. Liu, Y., Tong, S., Li, D., et al: ‘Fuzzy adaptive control with state observer for a class of nonlinear discretetime systems with input constraint’, IEEE Trans. Fuzzy Syst., 2016, PP, (99), p. 1, .

13)

13. Gao, Y., Liu, Y.: ‘Adaptive fuzzy optimal control using direct heuristic dynamic programming for chaotic discretetime system’, J. Vib. Control, 2016, 22, (2), pp. 595–603 (doi: 10.1177/1077546314534286).

14)

18. Lu, C., Si, J., Xie, X.: ‘Direct heuristic dynamic programming for damping oscillations in a large power system’, IEEE Trans. Syst. Man Cybern., 2008, 38, (4), pp. 1008–1013 (doi: 10.1109/TSMCB.2008.923157).

15)

15. Hou, Z.: ‘Nonparametric models and its adaptive control theory’ (Science Press, Beijing, 1999, 1st edn.).

16)

24. Hou, Z., Jin, S.: ‘Data driven modelfree adaptive control for a class of MIMO nonlinear discretetime systems’, IEEE Trans. Neural Netw., 2011, 22, (12), pp. 2173–2188 (doi: 10.1109/TNN.2011.2176141).

17)

17. Lu, C., Zhao, Y., Men, K., et al: ‘Widearea power system stabiliser based on modelfree adaptive control’, IET Control Theory Appl., 2015, 9, (13), pp. 1996–2007 (doi: 10.1049/ietcta.2014.1289).

18)

1. Yao, W., Jiang, L., Wen, J., et al: ‘Widearea damping controller of FACTS devices for interarea oscillations considering communication time delays’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 318–329 (doi: 10.1109/TPWRS.2013.2280216).

19)

16. Yao, W., Jiang, L., Wen, J., et al: ‘Widearea damping controller for power system interarea oscillations: a networked predictive control approach’, IEEE Trans. Control Syst. Tech., 2015, 23, (1), pp. 27–36 (doi: 10.1109/TCST.2014.2311852).

20)

20. Lu, C., Zhang, X., Wu, X., et al: ‘Mathematical expectation modeling of widearea controlled power systems with stochastic time delay’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 1511–1519 (doi: 10.1109/TSG.2014.2376527).

21)

21. Xue, J., Wu, H., Han, Z.: ‘On study of modelfree control system applied to complex large scale time delay systems’, Control Theory Appl., 2004, 23, (4), pp. 1–6.

22)

22. He, J., Li, L., Chen, H., et al: ‘Selection of feedback signal for power system damping controller based on wide area measurements’, Autom. Electr. Power Syst., 2007, 31, (9), pp. 6–10.

23)

23. Martins, N., Lima, L.T.G.: ‘Determination of suitable locations for power system stabilizers and static VAR compensators for damping electromechanical oscillations in large scale power systems’, IEEE Trans. Power Syst., 1990, 5, (4), pp. 1455–1469 (doi: 10.1109/59.99400).

24)

24. Astrom, K.J., Wittenmark, B.: ‘Adaptive control’ (AddisonWesley Longman Publishing, Boston, 1994, 2nd edn.).

25)

25. Ioannou, P.A., Sun, J.: ‘Robust adaptive control’ (PTR PrenticeHall Press, NJ, 1996).

26)

26. Zhao, Y., Lu, C., Liu, Y., et al: ‘Residue and identification based widearea damping controller design in largescale power system’. IEEE PES Conf. on Innovative Smart Grid Technologies, Washington DC, USA, January 2012, pp. 1–7.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietgtd.2016.0069
Related content
content/journals/10.1049/ietgtd.2016.0069
pub_keyword,iet_inspecKeyword,pub_concept
6
6