access icon free Optimal transmission access for generators in wind-integrated power systems: stochastic and robust programming approaches

Integrating wind generation in power systems has raised the issue of optimal transmission access for generators. The available transmission capacity for a generator is now subject to the uncertain wind generation. Therefore, the need for a transmission access mechanism has emerged. This study proposes three different optimisation models for calculating transmission access under uncertain wind generation. First, it develops a mathematical model to find the expected transmission access. A chance-constrained optimisation model is derived to find different levels of access to the transmission network with pre-specified reliability levels. The chance-constrained model provides detailed information regarding the available transmission access at different reliability levels. This gives options to a connecting generator regarding its choice of transmission access. Finally, a robust model for transmission access is proposed. The robust model provides the conservative transmission access which is assured against all future realisations of wind generation. The proposed expected, chance-constrained and robust approaches for optimal transmission access are numerically studied using an illustrative 2-bus example and the IEEE 30-bus and IEEE 300-bus case studies. The moment-matching technique is used to generate wind and demand scenarios. The numerical results show the utility of three derived models to calculate the optimal transmission access for generators.

Inspec keywords: wind power plants; power generation reliability; transmission networks; stochastic programming

Other keywords: optimal transmission access; IEEE 300-bus case studies; transmission capacity; robust programming; transmission network; chance-constrained optimisation model; wind-integrated power systems; transmission access mechanism; stochastic programming; wind generation; IEEE 30-bus case studies; moment-matching technique

Subjects: Wind power plants; Reliability; Optimisation techniques; a.c. transmission

References

    1. 1)
      • 31. ‘Power Systems Case Archive’, http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm, accessed 14 October 2015.
    2. 2)
      • 34. ‘MATPOWER’, http://www.pserc.cornell.edu/matpower/, accessed 23 August 2016.
    3. 3)
      • 22. Rubasheuski, U., Oppen, J., Woodruff, D.L.: ‘Multi-stage scenario generation by the combined moment matching and scenario reduction method’, Oper. Res. Lett., 2014, 42, (5), pp. 374377.
    4. 4)
      • 21. Smith, J.E.: ‘Moment methods for decision analysis’, Manage. Sci., 1993, 39, (3), pp. 340358.
    5. 5)
      • 14. Bertsimas, D., Litvinov, E., Sun, X.A., et al: ‘Adaptive robust optimization for the security constrained unit commitment problem’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 5263.
    6. 6)
      • 20. Saric, A.T., Stankovic, A.M.: ‘An application of interval analysis and optimization to electric energy markets’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 515523.
    7. 7)
      • 6. SONI: ‘Generator connection process’ (SONI, 2011).
    8. 8)
      • 11. Thiam, F.B., DeMarco, C.L.: ‘Transmission expansion via maximization of the volume of feasible bus injections’, Electr. Power Syst. Res., 2014, 116, pp. 3644.
    9. 9)
      • 12. Zhang, H., Li, P.: ‘Chance constrained programming for optimal power flow under uncertainty’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 24172424.
    10. 10)
      • 17. Jiang, R., Wang, J., Zhang, M., et al: ‘Two-stage minimax regret robust unit commitment’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 22712282.
    11. 11)
      • 4. De Breucker, S., Driesen, J., Belmans, R.: ‘Power quality in transmission grids: Guaranteed standards for power plants in France and the United Kingdom’. 13th Int. Conf. on Harmonics and Quality of Power, Wollongong, NSW, September 2008, pp. 16.
    12. 12)
      • 3. Hill Michael: ‘Development of transmission reliability standards for generators’ (Hill Michael, 2011).
    13. 13)
      • 7. AEMC: ‘First interim report – optional firm access, design and testing’ (AEMC, 2014).
    14. 14)
      • 28. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004).
    15. 15)
      • 16. Xiong, P., Jirutitijaroen, P.: ‘Two-stage adjustable robust optimisation for unit commitment under uncertainty’, IET Gener. Transm. Distrib., 2014, 8, (3), pp. 573582.
    16. 16)
      • 33. Shaaban, M., Bell, K.: ‘Assessment of tradable short-term transmission access rights to integrate renewable generation’. Proc. 44th Int. of Universities Power Engineering Conf., Glasgow, Scotland, September 2009, pp. 15.
    17. 17)
      • 23. Hoyland, K., Wallace, S.W.: ‘Generating scenario trees for multi-stage decision problems’, Manage. Sci., 2001, 47, (2), pp. 295307.
    18. 18)
      • 10. Leite da Silva, A.M., de Carvalho Costa, J.G., da Fonseca Manso, L.A., et al: ‘Transmission capacity: availability, maximum transfer and reliability’, IEEE Trans. Power Syst., 2002, 17, (3), pp. 843849.
    19. 19)
      • 8. PSERC: ‘Electric power transfer capability: concepts, applications, sensitivity, uncertainty’ (PSERC, 2001).
    20. 20)
      • 19. Wang, Z., Alvarado, F.L.: ‘Interval arithmetic in power flow analysis’, IEEE Trans. Power Syst., 1992, 7, (3), pp. 13411349.
    21. 21)
      • 2. CIGRE: ‘Review of transmission planning access requirements’ (CIGRE, 2014).
    22. 22)
      • 35. ‘300 Bus Power Flow Test Case’, http://www2.ee.washington.edu/research/pstca/pf300/pg_tca300bus.htm, accessed 23 August 2016.
    23. 23)
      • 5. Uzuncan, E., Hesamzadeh, M.R.: ‘Optimal transmission entry capacity in wind-integrated power systems’. 2014 IEEE Int. Energy Conf. (ENERGYCON), Cavtat, Croatia, May 2014, pp. 14671473.
    24. 24)
      • 13. Uzuncan, E., Hesamzadeh, M.R.: ‘Optimal firm transmission access using chance-constrained optimisation for renewable integration’. 2015 IEEE Power & Energy Society General Meeting, Denver, CO, July 2015, pp. 15.
    25. 25)
      • 24. Zhen, L.: ‘Task assignment under uncertainty: stochastic programming and robust optimisation approaches’, Int. J. Prod. Res., 2015, 53, (5), pp. 14871502.
    26. 26)
      • 9. Ou, Y., Singh, C.: ‘Assessment of available transfer capability and margins’, IEEE Trans. Power Syst., 2002, 17, (2), pp. 463468.
    27. 27)
      • 30. Morris, M.D.: ‘Factorial sampling plans for preliminary computational experiments’, Technometrics, 1991, 33, (2), pp. 161174.
    28. 28)
      • 15. Wu, L., Shahidehpour, M., Li, Z.: ‘Comparison of scenario-based and interval optimization approaches to stochastic SCUC’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 913921.
    29. 29)
      • 25. Assavapokee, T., Realff, M.J., Ammons, J.C.: ‘A min-max regret robust optimization approach for interval data uncertainty’, J. Optim. Theory Appl., 2008, 137, pp. 297316.
    30. 30)
      • 27. Morales, J.M., Conejo, A.J., Madsen, H., et al: ‘Integrating renewables in electricity markets: operational problems’ (Springer US, 2013).
    31. 31)
      • 26. Biggar, D.R., Hesamzadeh, M.R.: ‘The economics of electricity markets’ (Wiley, 2014).
    32. 32)
      • 1. Zhang, H., Li, P.: ‘Probabilistic analysis for optimal power flow under uncertainty’, IET Gener. Transm. Distrib., 2010, 4, (5), pp. 553661.
    33. 33)
      • 18. Hu, B., Wu, L., Marwali, M.: ‘On the robust solution to SCUC with load and wind uncertainty correlations’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 29522964.
    34. 34)
      • 32. ‘Historical Market Data’, http://www.nordpoolspot.com/historical-market-data/, accessed 27 April 2015.
    35. 35)
      • 29. Pereira, M.V., Granville, S., Fampa, M.H.C., et al: ‘Strategic bidding under uncertainty: a binary expansion approach’, IEEE Trans. Power Syst., 2005, 20, (1), pp. 180188.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.0041
Loading

Related content

content/journals/10.1049/iet-gtd.2016.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading