access icon free Numerical polynomial homotopy continuation method to locate all the power flow solutions

The manuscript addresses the problem of finding all solutions of power flow equations or other similar non-linear system of algebraic equations. This problem arises naturally in a number of power systems contexts, most importantly the direct methods for transient stability analysis and voltage stability assessment. Here, the authors introduce a novel form of homotopy continuation method called the numerical polynomial homotopy continuation method that is mathematically guaranteed to find all the solutions without ever encountering a bifurcation. Since finding real solutions is much more challenging, first the authors embed the real form of power flow equation in complex space, and then track the generally unphysical solutions with complex values of real and imaginary parts of the voltages. The solutions converge to physical real form in the end of the homotopy. The so-called gamma-trick mathematically rigorously ensures that all the paths are well-behaved along the paths, so unlike other continuation approaches, no special handling of bifurcations is necessary. The method is embarrassingly parallelisable. The authors demonstrate the technique performance by solving several test cases up to the 14 buses. Finally, they discuss possible strategies for scaling the method to large size systems, and propose several applications for security assessments.

Inspec keywords: load flow; power system transient stability; polynomials

Other keywords: gamma-trick; transient stability analysis; security assessments; numerical polynomial homotopy continuation method; voltage stability assessment; power flow solutions; nonlinear system-of-algebraic equations; power flow equations

Subjects: Power systems; Interpolation and function approximation (numerical analysis); Linear algebra (numerical analysis)

References

    1. 1)
      • 30. Molzahn, D.K., Mehta, D., Niemerg, M.: ‘Toward topologically based upper bounds on the number of power flow solutions’, 2015, arXiv preprint arXiv:1509.09227.
    2. 2)
    3. 3)
    4. 4)
      • 5. Chiang, H.-D., Fekih-Ahmed, L.: ‘On the direct method for transient stability analysis of power system structure preserving models’. IEEE Int. Symp. on Circuits and Systems, 1992, ISCAS ‘92. Proc., 1992, 1992, pp. 25452548.
    5. 5)
    6. 6)
    7. 7)
      • 4. Varaiya, P., Wu, F.F., Chen, R.L.: ‘Direct methods for transient stability analysis of power systems: recent results’. Proc. IEEE, 1985, pp. 17031715.
    8. 8)
    9. 9)
      • 25. Mehta, D., Stariolo, D.A., Kastner, M.: ‘Energy landscape of the finite-size spherical three-spin glass model’, Phys. Rev., 2013, E87, (5), p. 052143.
    10. 10)
    11. 11)
      • 13. Mori, H., Yuihara, A.: ‘Calculation of multiple power flow solutions with the krawczyk method’. Proc. 1999 IEEE Int. Symp. on Circuits and Systems, 1999, ISCAS'99, 1999, vol. 5, pp. 9497.
    12. 12)
      • 61. Nguyen, H., Turitsyn, D.K.: ‘Voltage multistability and pulse emergency control for distribution system with power flow reversal’, 2014, arXiv preprint arXiv:1407.1355.
    13. 13)
      • 36. Morgan, A., Sommese, A.: ‘A homotopy for solving general polynomial systems that respects m-homogeneous structures’, Appl. Math. Comput., 1987, 24, (2), pp. 101113.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 9. Mehta, D., Molzahn, D.K., Turitsyn, K.: ‘Recent advances in computational methods for the power flow equations’, 2015, arXiv preprint arXiv:1510.00073.
    18. 18)
      • 26. Greene, B., Kagan, D., Masoumi, A., et al: ‘Tumbling through a landscape: evidence of instabilities in high-dimensional moduli spaces’, Phys. Rev., 2013, D88, (2), p. 026005.
    19. 19)
      • 1. Kundur, P.: ‘Power system stability and control’ (New York, 1994).
    20. 20)
    21. 21)
      • 53. Lee, J.: ‘A novel homotopy-based algorithm for the closest unstable equilibrium point method in nonlinear stability analysis’. Proc. 2003 Int. Symp. on Circuits and Systems, 2003, ISCAS ‘03, 2003, pp. III8.
    22. 22)
      • 32. Sommese, A., Wampler, C.: ‘The numerical solution of systems of polynomials arising in engineering and science’ (World Scientific Publishing Company, 2005).
    23. 23)
      • 40. Bates, D., Hauenstein, J., Sommese, A., et al: ‘Bertini: software for numerical algebraic geometry’.
    24. 24)
    25. 25)
    26. 26)
      • 7. Van Cutsem, T., Vournas, C.: ‘Voltage stability of electric power systems’ (Springer, 1998), vol. 441.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 38. Khovanski, A.G.: ‘Newton polyhedra and the genus of complete intersections’, Funkts. Anal. Pril., 1978, 12, (1), pp. 5161.
    34. 34)
      • 64. Cvijić, S., Ilić, M.: ‘Distributed multiparty dc power flow algorithm with secure exchange of information’, in (Eds.): ‘Control of cyber-physical systems’ (Springer, 2013), pp. 241258.
    35. 35)
      • 10. Salam, F.M.A., Ni, L., Guo, S., et al: ‘Parallel processing for the load flow of power systems: the approach and applications’. Proc. 28th IEEE Conf. on Decision and Control, 1989, 1989, vol. 3, pp. 21732178.
    36. 36)
      • 33. Li, T.: ‘Solving polynomial systems by the homotopy continuation method’, in (Cucker, F., Ciarlet, P. Eds.): ‘Handbook of numerical analysis’ (North-Holland, 2003), vol. XI, pp. 209304.
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
      • 17. Mehta, D., Sternbeck, A., von Smekal, L., et al: ‘Lattice landau gauge and algebraic geometry’, PoS, 2009, QCD-TNT09, p. 025.
    43. 43)
    44. 44)
      • 29. Chandra, S., Mehta, D., Chakrabortty, A.: ‘Exploring the impact of wind penetration on power system equilibrium using a numerical continuation approach’, 2014, arXiv preprint arXiv:1409.7844.
    45. 45)
      • 39. Kushnirenko, A.G.: ‘Newton polytopes and the bezout theorem’, Funkts. Anal. Pril., 1976, 10, (3), pp. 8283.
    46. 46)
      • 6. Chiang, H.-D.: ‘Direct Methods for Stability Analysis of Electric Power Systems: Theoretical Foundation, BCU Methodologies, and Applications’, (John Wiley & Sons, Hoboken, NJ, USA, 2011).
    47. 47)
      • 15. Mehta, D.: ‘Lattice vs. continuum: landau gauge fixing and ‘t Hooft-Polyakov monopoles’, PhD thesis, 2009.
    48. 48)
    49. 49)
      • 47. Chow, S.-N., Mallet-Paret, J., Yorke, J.A.: ‘A homotopy method for locating all zeros of a system of polynomials’, in (Peitgen, H.O., Walther, H.O. Eds.): ‘Functional differential equations and approximation of fixed points’ (Springer, 1979), pp. 7788.
    50. 50)
    51. 51)
      • 45. Lee, L.T.Y., Tsai, T.L.C.H.: ‘Hom4ps-2.0, a software package for solving polynomial systems by the polyhedral homotopy continuation method, preprint’, 2008.
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
      • 50. ‘Power systems test case archive’. Available at http://www.ee.washington.edu/research/pstca/.
    58. 58)
    59. 59)
      • 48. Taylor, C., Balu, N., Maratukulam, D.: ‘Power system voltage stability’, The EPRI power system engineering series.
    60. 60)
    61. 61)
      • 22. Mehta, D., Hauenstein, J.D., Kastner, M.: ‘Energy landscape analysis of the two-dimensional nearest-neighbor phi4 model’, Phys. Rev., 2012, E85, p. 061103.
    62. 62)
      • 58. Hristov, P.E., Yorino, N., Zoka, Y., et al: ‘Robust method for detection of CUEP for power system transient stability screening’. Fourth IEEE/PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), 2013, 2013, pp. 15.
    63. 63)
      • 28. Chandra, S., Mehta, D., Chakrabortty, A.: ‘Equilibria analysis of power systems using a numerical homotopy method’. IEEE Power & Energy Society General Meeting, 2015, 2015, pp. 15.
    64. 64)
      • 11. Castro, J., Montes, A.: ‘Solving the load flow problem using gröbner basis’.
    65. 65)
    66. 66)
    67. 67)
      • 12. Nguyen, H.D., Turitsyn, K.S.: ‘Appearance of multiple stable load flow solutions under power flow reversal conditions’. Power and Energy Society General Meeting, 2014.
    68. 68)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2015.1546
Loading

Related content

content/journals/10.1049/iet-gtd.2015.1546
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading