http://iet.metastore.ingenta.com
1887

Calibration of erroneous branch parameters utilising learning automata theory

Calibration of erroneous branch parameters utilising learning automata theory

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Incorrectness of simulation model parameters can lead to erroneous results in power system operation and planning studies. Therefore, model parameters should be verified according to measurements obtained from the actual system. Mismatches between simulation results and corresponding field measurements can be considered as a sign for the necessity of model verification. Inaccurate branch parameters in simulation models can lead to misguided results in protection, operation and planning studies. An efficient algorithm is proposed in this study for detection and correction of erroneous branch parameters. First, suspicious parameters are selected utilising a sensitivity-based probabilistic method. Applying learning automata theory, selection probabilities will be modified according to simulation responses. A novel formulation is proposed for calculating selection probabilities according to simulation responses. Afterwards, selected parameters are modified by utilising an iterative Newton–Raphson scheme. Unlike state estimation-based methods, required sensitivities are calculated numerically. Therefore, the explicit mathematical formulation of measurements dependency on model parameters is unnecessary. The procedure of erroneous parameter detection and correction will be continued until the value of sum of squared errors (SSE), the objective function in optimisation procedure, becomes sufficiently small. Simulation results demonstrate the high efficiency of the proposed method.

References

    1. 1)
      • 1. Martis, M.S.: ‘Validation of simulation based models: a theoretical outlook’, Electron. J. Bus. Res. Methods, 2006, 4, (1), pp. 3946.
    2. 2)
      • 2. Allen, E., Kosterev, D., Pourbeik, P.: ‘Validation of power system models’. Power and Energy Society General Meeting IEEE, (IEEE, 2010), 2010.
    3. 3)
      • 3. Castillo, M., London, J., Bretas, N.: ‘Network branch parameter validation based on a decoupled state/parameter estimator and historical data’. IEEE Bucharest PowerTech, (IEEE, 2009), 2009.
    4. 4)
      • 4. Floret-Pontet, F., Lamnabhi-Lagarrigue, F.: ‘Parameter identification and state estimation for continuous-time nonlinear systems’. Proc. 2002 American Control Conf., (IEEE, 2002), 2002.
    5. 5)
      • 5. Jirdehi, M.A., Hagh, M.T.: ‘Identification and estimation of branch parameter errors: a new three stages method’. Twenty-Second Iranian Conf. on Electrical Engineering (ICEE), (IEEE, 2014), 2014.
    6. 6)
    7. 7)
      • 7. Mei, J.Z.F.L.S.: ‘Branch parameter error identification and estimation in power systems’. Pervasive Computing, 2010.
    8. 8)
    9. 9)
      • 9. Zhu, J., Abur, A.: ‘Identification of network parameter errors using phasor measurements’. Power & Energy Society General Meeting. PES'09. IEEE, (IEEE, 2009), 2009.
    10. 10)
    11. 11)
    12. 12)
      • 12. Fodor, A., Magyar, A., Hangos, K.M.: ‘Parameter sensitivity analysis of a synchronous generator’, Hung. J. Ind. Chem., 2010, 38, (1), pp. 2126.
    13. 13)
    14. 14)
      • 14. Liu, J., West, M.: ‘Combined parameter and state estimation in simulation-based filtering’, Sequential Monte Carlo Methods in Practice’ (Springer, New York, NY, USA, 2001).
    15. 15)
      • 15. Phadke, A.G.: ‘Synchronized phasor measurements-a historical overview’. Transmission and Distribution Conf. and Exhibition 2002: Asia Pacific. IEEE/PES, (IEEE, 2002), 2002.
    16. 16)
      • 16. Suquan, Z., Liying, Z., Yanjun, Z., et al: ‘A new approach to branch parameter estimation of power grid based on PMU’. Asia-Pacific Power and Energy Engineering Conf. (APPEEC), (IEEE, 2011), 2011.
    17. 17)
    18. 18)
    19. 19)
      • 19. Abur, A., Exposito, A.G.: ‘Power system state estimation: theory and implementation’ (CRC Press, Basel, Switzerland, 2004).
    20. 20)
    21. 21)
      • 21. Dongyu, S., Xiaorong, X., Luyuan, T.: ‘Studies on parameter identification using genetic algorithm in power system’. Transmission and Distribution Conf. and Exhibition: Asia and Pacific, IEEE/PES, (IEEE, 2005), 2005.
    22. 22)
      • 22. Meza, E.B.M., De Souza, J.C.S.: ‘Parameter Estimation through a genetic algorithm’. Fifteenth Int. Conf. on Intelligent System Applications to Power Systems. ISAP'09, (IEEE, 2009), 2009.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 27. Velez-Reyes, M., Verghese, G.C.: ‘Subset selection in identification, and application to speed and parameter estimation for induction machines’. Proc. Fourth IEEE Conf. on Control Applications, (IEEE, 1995), 1995.
    28. 28)
    29. 29)
      • 29. Engl, H.W., Groetsch, C.W.: ‘Inverse and ill-posed problems’ (Elsevier, Orlando, FL, USA, 2014).
    30. 30)
    31. 31)
    32. 32)
      • 32. Rastegar, R., Meybodi, M.R.: ‘A new estimation of distribution algorithm based on learning automata’. Congress on Evolutionary Computation, 2005.
    33. 33)
      • 33. Narendra, K.S., Thathachar, M.A.: ‘Learning automata: an introduction’ (Courier Corporation, New York, NY, USA, 2012).
    34. 34)
      • 34. Najim, K., Poznyak, A.S.: ‘Learning automata: theory and applications’ (Elsevier, New York, NY, USA, 2014).
    35. 35)
    36. 36)
      • 36. Zhang, J., Wang, C., Zhou, M.: ‘Last-position elimination-based learning automata’. 2014.
    37. 37)
    38. 38)
    39. 39)
      • 39. Zhang, J., Li, Z., Kang, Q., et al: ‘A new class of learning automata for selecting an optimal subset’. IEEE Int. Conf. on Systems, Man and Cybernetics (SMC), (IEEE, 2014), 2014.
    40. 40)
    41. 41)
    42. 42)
      • 42. http://www.mathworks.com/matlabcentral/fileexchange/44154-psotoolbox, accessed Date (Accessed 2013).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2015.1046
Loading

Related content

content/journals/10.1049/iet-gtd.2015.1046
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address