© The Institution of Engineering and Technology
Commutation failure immunity index (CFII) is a useful indicator to quantify the immunity level to commutation failures in line commutated converterbased multiinfeed HVDC systems. Instead of using simulation tools which inevitably lead to heavy workload and long computation time, the analytical expressions of ‘local CFII’ (LCFII) and ‘concurrent CFII’ (CCFII) are derived based on the minimum extinction angle criteria. Using these expressions, the impact of the system parameters on commutation failure immunity levels in the inverter side can be determined quickly and effectively. Moreover, the derived analytical expressions will make the parametric sensitivity analysis more comprehensive and complete compared to the traditional simulationbased methods. Furthermore, in order to give an insight into how interinverter interactions influence the concurrent commutation failure behaviours, an improved index ‘weak coupling multiinfeed interaction factor’ (WCMIIF) is proposed. The validity and accuracy of the proposed index and analytical expressions are verified by the simulated results based on a dualinfeed HVDC system in PSCAD/EMTDC, which indicate that LCFII has an approximately linear correlation with the local effective shortcircuit ratio (ESCR) of the faulted ac system, and that with the WCMIIF unchanged, CCFII has an approximately linear correlation with the local ESCR and an inverse correlation with the multiinfeed interaction factor.
References


1)

1. Arrillaga, J.: ‘High voltage direct current transmission’ (Inst. Elect. Eng. Publ., London, 1998).

2)

2. Thio, C.V., Davies, J.B., Kent, K.L.: ‘Commutation failures in HVDC transmission systems’, IEEE Trans. Power Deliv.,1996, 11, (2), pp. 946–957 (doi: 10.1109/61.489356).

3)

3. Kundur, P.: ‘Power system stability and control, in EPRI power system engineering series’ (McGrawHill, New York, 1994).

4)

4. Tamai, S., Naitoh, H., Ishiguro, F., et al: ‘Fast and predictive HVDC extinction angle control’, IEEE Trans. Power Syst., 1997, 12, (3), pp. 1268–1275 (doi: 10.1109/59.630470).

5)

5. Huang, H., Xu, Z., Lin, X.: ‘Improving performance of multiinfeed HVDC systems using grid dynamic segmentation technique based on fault current limiters’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 1664–1672 (doi: 10.1109/TPWRS.2012.2187316).

6)

6. Huang, D., Shu, Y., Ruan, J., et al: ‘Ultra high voltage transmission in china: developments, current status and future prospects’, Proc. IEEE, 2009, 97, (3), pp. 555–583 (doi: 10.1109/JPROC.2009.2013613).

7)

7. Zhou, C., Xu, Z.: ‘Study on commutation failure of multiinfeed HVDC system’. Proc. IEEE Power System Technology Conf., Kunming, China, 2002, pp. 2462–2466.

8)

8. Nayak, R.N., Sasmal, R.P., Sehgal, Y.K., et al: ‘AC/DC interactions in multiinfeed HVDC scheme: a case study’. IEEE Power Conf., India, 2006, p. 5.

9)

9. Rahimi, E., Gole, A.M., Davies, J.B., et al: ‘Commutation failure in single and multiinfeed HVDC systems’. Proc. 8th Institute of Electrical Engineers Int. Conf. ACDC Power Transmission, London, U.K., 2006, pp. 182–186.

10)

10. He, Z., Li, X.: ‘Study on mutual admittance and commutation failure for multiinfeed HVDC transmission systems’, Proc. CSEE, 2008, 28, (7), pp. 51–57.

11)

11. Rahimi, E., Gole, A.M., Davies, J.B., et al: ‘Commutation failure analysis in multiinfeed HVDC systems’, IEEE Trans. Power Deliv., 2011, 1, (26), pp. 378–384 (doi: 10.1109/TPWRD.2010.2081692).

12)

12. Shao, Y., Tang, Y.: ‘A commutation failure detection method for HVDC systems based on multiinfeed interaction factors’, Proc. CSEE, 2012, 32, (04), pp. 108–114.

13)

13. Rahimi, E.: ‘Voltage interactions and commutation failure phenomena in multiinfeed HVDC systems’. PhD thesis, University of Manitoba, 2011.

14)

14. Szechtman, M., Wess, T., Thio, C.V.: ‘First benchmark model for HVDC control studies’, Electra, 1991, (135), pp. 54–73.

15)

15. Kristmundsson, G.M., Carroll, D.P.: ‘The effect of AC system frequency spectrum on commutation failure in HVDC inverters’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 1121–1128 (doi: 10.1109/61.53130).

16)

16. Bauman, J., Kazerani, M.: ‘Commutation failure reduction in HVDC systems using adaptive fuzzy logic controller’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 1995–2002 (doi: 10.1109/TPWRS.2007.907385).

17)

17. Hansen, A., Havemann, H.: ‘Decreasing the commutation failure frequency in HVDC transmission systems’, IEEE Trans. Power Deliv., 2000, 15, (3), pp. 1022–1026 (doi: 10.1109/61.871369).

18)

18. Meisingset, M., Gole, A.M.: ‘A comparison of conventional and capacitor commutated converters based on steadystate and dynamic considerations’. Proc. 7th Int. Conf. ACDC Power Transmission, 2001, pp. 49–54.

19)

19. IEEE Standard C12041997: ‘IEEE guide for planning DC links terminating at AC locations having low shortcircuit capacities’, 1997.

20)

20. CIGRE Working Group B4.41: ‘Systems with multiple DC infeed’, 2008, pp. 16–17.

21)

21. Bui, L.X., Sood, V.K., Laurin, S.: ‘Dynamic interactions between HVDC systems connected to AC buses in close proximity’, IEEE Trans. Power Deliv., 1991, 6, (1), pp. 223–230 (doi: 10.1109/61.103741).
http://iet.metastore.ingenta.com/content/journals/10.1049/ietgtd.2015.0800
Related content
content/journals/10.1049/ietgtd.2015.0800
pub_keyword,iet_inspecKeyword,pub_concept
6
6