http://iet.metastore.ingenta.com
1887

Time-horizons in the planning and operation of transmission networks: an overview

Time-horizons in the planning and operation of transmission networks: an overview

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In the planning and operation of power systems, actions are taken in different processes and time-horizons. The purpose of these actions is to secure a high reliability level. Although the three main processes (grid development, asset management, and system operation) are described in literature, there has been no explicit study on the time-horizons (long-term, mid-term, and short-term) and actual time-scale (decades, years, months, etc.) that these processes focus on. This study aims at making a review of the various activities performed by transmission system operators while reviewing the concept of each time-horizon and methodologies developed in literature. As decisions taken in different time-horizons can influence each other, the interactions and overlapping are discussed.

References

    1. 1)
      • 1. Wood, A.J., Wollenberg, B.F.: ‘Power generation, operation, and control’ (John Wiley & Sons, 2012).
    2. 2)
    3. 3)
    4. 4)
      • 4. Schilling, M.T., Leite da Silva, A.M., Billinton, R., et al: ‘Bibliography on the application of probability methods in power system reliability evaluation’, IEEE Trans. Power Appar. Syst., 1972, 91, (2), pp. 649660.
    5. 5)
    6. 6)
    7. 7)
      • 7. Schilling, M.T., Billinton, R., Groetaers dos Santos, M.: ‘Bibliography on power systems probabilistic security analysis 1968–2008’, Emerging Electr. Power Syst., 2009, 10, (3), pp. 148.
    8. 8)
      • 8. Billinton, R., Allan, R.N.: ‘Reliability evaluation of power systems’ (Plenum Press, New York, 1996).
    9. 9)
      • 9. Guo, Y.: ‘Power system reliability analysis’ (Tsinghua Press, Beijing, 2003).
    10. 10)
      • 10. Billinton, R., Li, W.: ‘Reliability assessment of electric power systems using Monte Carlo methods’ (Plenum Press, New York, 1994).
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 14. Lee, C.W., Ng, S.K.K., Zhong, J., et al: ‘Transmission expansion planning from past to future’. Proc. of IEEE Power Systems Conf. Exposition, 2006.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 18. Gu, Y.: ‘Long-term power system capacity expansion planning considering reliability and economic criteria’ (Iowa State University, 2011).
    19. 19)
      • 19. Genesi, C., Marannino, P., Montagna, M., et al: ‘Risk management in long term generation planning’. Proc. of European Energy Market Conf., 2009.
    20. 20)
      • 20. Barquin, J., Centeno, E., Reneses, J.: ‘Stochastic market equilibrium model for generation planning’. Proc. of IEEE Probabilistic Methods Applied to Power Systems Conf., 2004.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
      • 45. Yoshimoto, K., Yasuda, K., Yokohama, R.: ‘Transmission expansion planning using neuro-computing hybridized with genetic algorithm’. Proc. of IEEE Int. Conf. on Evolutionary Computation, 1995.
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
      • 58. Teive, R.C.G., Fonseca, L.G.S.: ‘A hybrid system based on knowledge to the electrical power networks expansion planning’. Proc. of IEEE PowerTech Conf., 1995.
    59. 59)
      • 59. Sun, H., Yu, D.C.: ‘A multiple-objective optimization model of transmission enhancement planning for independent transmission company (ITC)’. Proc. of IEEE Power Engineering Society Summer Meeting, 2000.
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
      • 65. Ferreira, J., Ramos, S., Vale, Z., et al: ‘A data-mining-based methodology for transmission expansion planning’, IEEE Trans. Intell. Transp. Syst., 2011, 26, (2), pp. 2837.
    66. 66)
      • 66. Torres, S.P., Castro, C.A.: ‘Parallel particle swarm optimization applied to the static transmission expansion planning problem’. Proc. of IEEE Transmission and Distribution: Latin America Conf. Exposition, 2012.
    67. 67)
      • 67. Eghbal, M., Saha, T.K., Hasan, K.N.: ‘Transmission expansion planning by meta-heuristic techniques: a comparison of shuffled frog leaping algorithm, PSO and GA’. Proc. of IEEE Power and Energy Society General Meeting, 2011.
    68. 68)
    69. 69)
    70. 70)
    71. 71)
      • 71. Bertsch, V., Fichtner, W.: ‘A participatory multi-criteria approach for power generation and transmission planning’, Ann. Oper. Res., 2015, pp. 131.
    72. 72)
    73. 73)
    74. 74)
    75. 75)
    76. 76)
    77. 77)
    78. 78)
    79. 79)
      • 79. Milligan, M., Donohoo, P., O'Malley, P.: ‘Stochastic methods for planning and operating power system with large amounts of wind and solar power’. NREL/CP-5500-56208, Golden, CO, 2012.
    80. 80)
      • 80. Ugranli, F., Karatepe, E.: ‘Transmission expansion planning for wind turbine integrated power systems considering contingencies’. Proc. of IEEE Int. Symp. on Innovations in Intelligent Systems and Applications, 2014.
    81. 81)
    82. 82)
    83. 83)
    84. 84)
    85. 85)
    86. 86)
      • 86. Correa, C.A., Bolanos, R., Garces, A., et al: ‘Multi objective environmental transmission network expansion planning’. Proc. of IEEE PowerTech Conf., 2013.
    87. 87)
    88. 88)
    89. 89)
      • 89. Tor, O., Shahidehpour, M.: ‘Power distribution asset management’. Proc. of IEEE Power Engineering Society General Meeting, 2006.
    90. 90)
      • 90. CIGRE WG D1.17: ‘Generic guidelines for life time condition assessment of HV assets and related knowledge rules’, 2010.
    91. 91)
      • 91. Mehairjan, R.P.Y., Djairam, D., Zhuang, Q., et al: ‘Statistical life data analysis for electricity distribution cable assets – an asset management approach’. Proc. of IET and IAM Asset Management Conf., 2011.
    92. 92)
      • 92. Mohapatra, S.K.R., Mukhopadhyay, S.: ‘Risk and asset management of transmission system in a reformed power sector’. Proc. of IEEE Power India Conf., 2006.
    93. 93)
      • 93. Smit, J.J., Quak, B., Gulski, E.: ‘Integral decision support for asset management of electrical infrastructures’. Proc. of IEEE Systems, Man, and Cybernetics Conf., 2006.
    94. 94)
      • 94. Endo, F., Kanamitsu, M., Shiomi, R., et al: ‘Optimization of asset management and power system operation based on equipment performance’. Proc. of IEEE Int. Conf. on Condition Monitoring and Diagnosis, 2008.
    95. 95)
    96. 96)
      • 96. Puglia, G., Bangalore, P., Tjernberg, L.B.: ‘Cost efficient maintenance strategies for wind power systems using LCC’. Proc. of Int. Conf. on Probabilistic Methods Applied to Power Systems, 2014.
    97. 97)
    98. 98)
      • 98. Franzén, A., Bertling, L.: ‘State of the art-life time modeling and management of transformers’ (Royal Institute of Technology, Stockholm, 2007).
    99. 99)
    100. 100)
    101. 101)
    102. 102)
      • 102. Heggset, J., Solvang, E., Christensen, J.S., et al: ‘Failure models for network components as a basis for asset management’. Proc. of Nordic Distribution and Asset Management Conf., 2006.
    103. 103)
      • 103. Brown, R.E., Spare, J.H.: ‘Asset management, risk, and distribution system planning’. Proc. of IEEE Power Systems Conf. on Exposition, 2004.
    104. 104)
      • 104. Besnard, F., Fischer, K., Bertling, L.: ‘Reliability-centered asset maintenance – a step towards enhanced reliability, availability, and profitability of wind power plants’. Proc. of Innovative Smart Grid Technology Conf. Europe, 2010.
    105. 105)
    106. 106)
    107. 107)
    108. 108)
    109. 109)
    110. 110)
    111. 111)
      • 111. Abu-Elanien, A.E.B., Salama, M.M.A., Ibrahim, M.: ‘Determination of transformer health condition using artificial neural networks’. Proc. of IEEE Innovations in Intelligent Systems and Applications, 2011.
    112. 112)
      • 112. GE Energy: ‘Determination of health index for aging transformers in view of substation asset optimization’, 2010.
    113. 113)
    114. 114)
    115. 115)
    116. 116)
    117. 117)
      • 117. Carer, P.: ‘Probabilistic methods used in asset management for MV electrical equipment at EDP’. Proc. of Int. Conf. on Probabilistic Methods Applied to Power Systems, 2006.
    118. 118)
      • 118. Haghifam, M.-R., Akhavan-Rezai, E., Fereidunian, A.: ‘An asset management approach to momentary failure risk analysis on MV overhead lines’. Proc. of Int. Conf. on Probabilistic Methods Applied to Power Systems, 2010.
    119. 119)
      • 119. Bloom, J.A., Feinstein, C., Morris, P.: ‘Optimal replacement of underground distribution cables’. Proc. of IEEE Power Systems Conf. Exposition, 2006.
    120. 120)
      • 120. Mackinlay, R., Walton, C.: ‘Diagnostics for MV cables and switchgear as a tool for effective asset management’. Proc. of Int. Conf. on Exhibition on Electricity Distribution, 2001.
    121. 121)
      • 121. Lindquist, T., Bertling, L., Eriksson, R.: ‘A feasibility study for probabilistic modeling of aging in circuit breakers for maintenance optimization’. Proc. of Int. Conf. on Probabilistic Methods Applied to Power Systems, 2004.
    122. 122)
    123. 123)
      • 123. Natti, S.: ‘Risk based maintenance optimization using probabilistic maintenance quantification models of circuit breaker’ (Texas A&M University, 2008).
    124. 124)
    125. 125)
    126. 126)
      • 126. Kostic, T.: ‘Asset management in electrical utilities: how many facets it actually has’. Proc. of IEEE Power Engineering Society General Meeting, 2003.
    127. 127)
      • 127. Yuen, C., Kostic, T.: ‘IT applications for asset management: disturbance records as support for AM processes’. Proc. of IEEE PowerTech Conf., 2003.
    128. 128)
      • 128. Abeygunawardane, S.K., Jirutitijaroen, P.: ‘A realistic maintenance model based on a new state diagram’. Proc. of Int. Conf. on Probabilistic Methods Applied to Power Systems, 2010.
    129. 129)
      • 129. Lucio, J.C.M., Teive, R.C.G.: ‘Fuzzy causal maps for asset management: an approach for problem structuring and multi-criteria evaluation in electrical utilities’. Proc. of IEEE PowerTech Conf., 2007.
    130. 130)
      • 130. Jayakumar, A., Asgarpoor, S.: ‘Maintenance optimization of equipment by linear programming’. Proc. of Int. Conf. on Probabilistic Methods Applied to Power Systems, 2004.
    131. 131)
      • 131. Tanaka, H., Magori, H., Niimura, T., et al: ‘Optimal replacement scheduling of obsolete substation equipment by branch & bound method’. Proc. of IEEE Power and Energy Society General Meeting, 2010.
    132. 132)
      • 132. Lindquist, T.M., Bertling, L., Eriksson, R.: ‘Estimation of disconnector contact condition for modelling the effect of maintenance and ageing’. Proc. of IEEE PowerTech Conf., 2005.
    133. 133)
      • 133. Lindquist, T.M., Bertling, L., Eriksson, R.: ‘A method for age modeling of power system components based on experiences from the design process with the purpose of maintenance optimization’. Proc. of Int. Conf. on Reliability and Maintainability Symp., 2005.
    134. 134)
    135. 135)
    136. 136)
    137. 137)
    138. 138)
    139. 139)
    140. 140)
    141. 141)
    142. 142)
    143. 143)
    144. 144)
    145. 145)
    146. 146)
      • 146. Gong, B., Hiskens, I.: ‘Two-stage model predictive control for voltage collapse prevention’. Proc. of IEEE North American Power Symp., 2008.
    147. 147)
    148. 148)
      • 148. Singh, A., Chauhan, S.: ‘Security monitoring against voltage collapse through ant colony system’. Proc. of IEEE National Power Systems Conf., 2014.
    149. 149)
    150. 150)
    151. 151)
    152. 152)
    153. 153)
    154. 154)
    155. 155)
      • 155. McCalley, J., Asgarpoor, S., Bertling, L., et al: ‘Probabilistic security assessment for power system operations’. Proc. of IEEE Power Engineering Society General Meeting, 2004.
    156. 156)
      • 156. CIGRE WG C4.601: ‘Review of the current status of tools and techniques for risk-based and probabilistic planning in power systems’, 2010.
    157. 157)
      • 157. Nordgård, D.E., Uhlen, K., Bakken, B.H., et al: ‘Implementation of a probabilistic security assessment tool for determination of power transfer limits’. CIGRE Session, 2002.
    158. 158)
    159. 159)
    160. 160)
    161. 161)
    162. 162)
      • 162. Tuinema, B.W., Gibescu, M., Kling, W.L.: ‘Availability evaluation of offshore wind energy networks within the Dutch power system’. Proc. of IEEE Young Researchers Symp.: Smart Sustainable Power Delivery, 2010.
    163. 163)
      • 163. Vefsnmo, H., Kjolle, G., Jakobsen, S.H., et al: ‘Risk assessment tool for operation: from threat models to risk indicators’. Proc. of IEEE PowerTech Conf., 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2015.0791
Loading

Related content

content/journals/10.1049/iet-gtd.2015.0791
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address