Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Coupled electric–magnetic–thermal–mechanical modelling of busbars under short-circuit conditions

This study presents a coupled electric–magnetic–thermal–mechanical analysis of busbar systems under short-circuit currents. The analysis is carried out by making use of the finite-element method, which enables one to closely model two-way interactions among separate continuum physics. In contrast to previous works, which only consider the peak value of the short-circuit current, this method evaluates the magnetic force, the temperature rise, the mechanical displacement and their interactions over the simulation time of interest. The mechanical displacements are obtained by means of a three-dimensional analysis. It is found that the type of busbar support can markedly affect the conductor displacement during the short-circuit current. The temperature rise due to the short-circuit current flows is found to have a slight effect on the displacement of busbar conductors.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 27. Saadat, H.: ‘Power system analysis’ (McGraw-Hill, 2002).
    6. 6)
      • 10. Yusop, F.M., Jamil, M.K.M., Ishak, D., et al: ‘Investigation of electromagnetic force during short-circuit test in three-phase busbar system’. Proc. IEEE Humanities, Science and Engineering, Penang, December 2011, pp. 340344.
    7. 7)
      • 24. Incropera, F.P., DeWitt, D.P.: ‘Fundamental of heat and mass transfer’ (John Wiley, 2009).
    8. 8)
      • 25. COMSOL: ‘COMSOL structural mechanics module user's guide’ (COMSOL, Stockholm, Sweden, 2012).
    9. 9)
      • 9. Yusop, F.M., Jamil, M.K.M., Ishak, D., et al: ‘Study on the electromagnetic force affected by short-circuit current in vertical and horizontal arrangement of busbar system’. Proc. IEEE Int. Conf. on Electrical, Control and Computer Engineering, Pahang, Malaysia, June 2011, pp. 196200.
    10. 10)
      • 26. IEC Std. 60947-1: ‘IEC low-voltage switchgear and controlgear – general rules’, March 2004.
    11. 11)
    12. 12)
      • 29. IEC Std. 60865-1: ‘Short-circuit currents – calculation of effects – part 1: definitions and calculation methods’, 1993.
    13. 13)
    14. 14)
    15. 15)
      • 23. COMSOL: ‘COMSOL heat transfer module user's guide’ (COMSOL, Stockholm, Sweden, 2012).
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 30. Timoshenko, S.: ‘Strength of materials’ (D. Van nostrand Company, 1930).
    20. 20)
      • 22. ‘COMSOL Multiphysics Software Package’. Available at http://www.comsol.com, accessed 2012.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 28. IEC Std. 61439-1: ‘IEC low-voltage switchgear and controlgear assemblies – type-tested and partially type-tested assemblies’, 2009.
    28. 28)
    29. 29)
      • 16. Ranvier, S., Paquay, S., Requier, S., et al: ‘Influence of multiphysics couplings on the performance of a MEMS magnetometer’. Twelfth Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE, April 2011, pp. 16.
    30. 30)
      • 8. Abd-El-Aziz, M.M., Adly, A.A., Abou-El-Zahab, E.M.: ‘Assessment of electromagnetic forces resulting from arbitrary geometrical busbar configurations’. Proc. IEEE Electrical, Electronic and Computer Engineering, Cairo, Egypt, September 2004, pp. 774777.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2015.0706
Loading

Related content

content/journals/10.1049/iet-gtd.2015.0706
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address