© The Institution of Engineering and Technology
The integration of stochastic wind power has accentuated a challenge for power system stability assessment. Since the power system is a timevariant system under wind generation fluctuations, pure timedomain simulations are difficult to provide realtime stability assessment. As a result, the worstcase scenario is simulated to give a very conservative assessment of system transient stability. In this study, a probabilistic contingency analysis through a stability measure method is proposed to provide a less conservative contingency analysis which covers 5min wind fluctuations and a successive fault. This probabilistic approach would estimate the transfer limit of a critical line for a given fault with stochastic wind generation and active control devices in a multimachine system. This approach achieves a lower computation cost and improved accuracy using a new stability measure and polynomial interpolation, and is feasible for online contingency analysis.
References


1)

1. Morison, K., Wang, L., Kundur, P.: ‘Power system security assessment’, IEEE Power Energy Mag., 2004, 2, (5), pp. 30–39 (doi: 10.1109/MPAE.2004.1338120).

2)

2. Zhai, J.: ‘Outage assessment’ (AEMO, 2014). .

3)

6. Billinton, R., FotuhiFiruzabad, M., Bertling, L.: ‘Bibliography on the application of probability methods in power system reliability evaluation 1996–1999’, IEEE Trans. Power Syst., 2001, 16, (4), pp. 595–602 (doi: 10.1109/59.962402).

4)

4. Faried, S.O., Billinton, R., Aboreshaid, S.: ‘Probabilistic evaluation of transient stability of a power system incorporating wind farms’, IET Renew. Power Gener., 2010, 4, (4), pp. 299–307 (doi: 10.1049/ietrpg.2009.0031).

5)

5. Wenyuan, L., Vaahedi, E., Zhenhua, L.: ‘BC Hydro's transmission reliability margin assessment in total transfer capability calculations’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 4796–4802 (doi: 10.1109/TPWRS.2013.2275748).

6)

6. Guo, T., Milanovic, J.V.: ‘Probabilistic framework for assessing the accuracy of data mining tool for online prediction of transient stability’, IEEE Trans. Power Syst., 2013, PP, (99), pp. 1–9.

7)

7. Abdul Wahab, N.I., Mohamed, A.: ‘Transient stability assessment of a large actual power system using probabilistic neural network with enhanced feature selection and extraction’. Int. Conf. on Electrical Engineering and Informatics, 2009. ICEEI '09.2009, pp. 519–524.

8)

8. Perninge, M., Lindskog, F., Soder, L.: ‘Importance sampling of injected powers for electric power system security analysis’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 3–11 (doi: 10.1109/TPWRS.2011.2162654).

9)

9. Yingzhong, G., Le, X.: ‘Fast sensitivity analysis approach to assessing congestion induced wind curtailment’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 101–110 (doi: 10.1109/TPWRS.2013.2282286).

10)

10. Zhang, Y., Wehenkel, L., Rousseaux, P., et al: ‘SIME: A hybrid approach to fast transient stability assessment and contingency selection’, Int. J. Electr. Power Energy Syst., 1997, 19, (3), pp. 195–208 (doi: 10.1016/S01420615(96)000476).

11)

11. Carpinone, A., Langella, R., Testa, A., et al: ‘Very shortterm probabilistic wind power forecasting based on Markov chain models’. IEEE 11th Int. Conf. on Probabilistic Methods Applied to Power Systems Singapore, 14–17 June 2010, pp. 107–112.

12)

33. Papaefthymiou, G., Klockl, B.: ‘MCMC for wind power simulation’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 234–240 (doi: 10.1109/TEC.2007.914174).

13)

13. Wan, Y.H.: ‘Wind power plant behaviors: analyses of longterm wind power data’ (National Renewable Energy Laboratory, Golden, Colorado, 2004).

14)

1. Costa, A., Crespo, A., Navarro, J., et al: ‘A review on the young history of the wind power shortterm prediction’, Renew. Sustain. Energy Rev., 2008, 12, (6), pp. 1725–1744 (doi: 10.1016/j.rser.2007.01.015).

15)

15. Papoulis, A., Pillai, S.U.: ‘Probability, random variables, and stochastic processes’ (McGrawHill, Boston, MA, 2002, 4th edn.).

16)

16. Apt, J.: ‘The spectrum of power from wind turbines’, J. Power Sources, 2007, 169, (2), pp. 369–374 (doi: 10.1016/j.jpowsour.2007.02.077).

17)

17. Australian Energy Market Operator: ‘Integrating renewable energy – wind integration studies report’ (AEMO, 2013).

18)

18. Power System Dynamics Group: ‘PSDG contribution to the IEEE Benchmark Systems for Stability Controls Task Force’ (The University of Adelaide, Adelaide, SA, Australia, 2010). .
http://iet.metastore.ingenta.com/content/journals/10.1049/ietgtd.2015.0496
Related content
content/journals/10.1049/ietgtd.2015.0496
pub_keyword,iet_inspecKeyword,pub_concept
6
6