access icon free Rigorous calculation method for resonance frequencies in transmission line responses

This study presents a new, generalised method for the calculation of resonance frequencies (RFs) in transmission line (TL) responses. The proposed method calculates the RF of any propagation mode and is applicable to all types of TL configurations, taking also into account the effect of the source and load impedances as well as of possible transpositions or cross-bondings. The results are validated with the corresponding results obtained from frequency-domain transient simulations and laboratory measurements, whereas simple theoretical formulas for both overhead lines and underground cables are also investigated, revealing their limited accuracy. Practical cases of engineering interest are demonstrated, where the required single or multiple RFs are accurately calculated by the proposed method. Finally, the performance of the presented methodology is thoroughly examined incorporating two diagonalisation approaches for the calculation of the modal propagation velocities.

Inspec keywords: power system measurement; frequency-domain analysis; power overhead lines; power system transients; underground cables

Other keywords: laboratory measurements; overhead lines; diagonalisation approach; transmission line response; rigorous calculation method; resonance frequency; frequency-domain transient simulations; load impedance; cross-bondings; propagation mode; modal propagation velocity; source impedance; underground cables

Subjects: Power cables; Overhead power lines; Power system measurement and metering; Mathematical analysis

References

    1. 1)
    2. 2)
    3. 3)
      • 3. Soloot, A.H., Bahirat, H.J., Høidalen, H.K., Gustavsen, B., Mork, B.A.: ‘Investigation of resonant overvoltages in offshore wind farms – Modeling and protection’. IPST 2013, Vancouver, Canada, 2013.
    4. 4)
      • 7. Colla, L., Lauria, S., Gatta, F.M.: ‘Temporary overvoltages due to harmonic resonance in long EHV cables’. IPST 2007, Lyon, France, 2007.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 21. Indulkar, C.S., Kumar, P., Kothari, D.P.: ‘Modal propagation and sensitivity of modal quantities in crossbonded cables’, Proc. Inst. Electr. Eng., 1983, 130, (6), pp. 278284.
    12. 12)
      • 12. Manitoba HVDC Research Centre: ‘EMTDC user's guide – Transient analysis for PSCAD power system simulation’ (Manitoba, 2010).
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 8. Arrillaga, J., Smith, B.C., Watson, N.R., Wood, A.R.: ‘Power system harmonic analysis’ (Wiley, 1997).
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 6. Chrysochos, A.I., Papadopoulos, T.A., Papagiannis, G.K.: ‘Improved time-domain modeling of underground cables’. UPEC 2011, Soest, Germany, 2011.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 27. Sunde, E.D.: ‘Earth conduction effects in transmission systems’ (Dover, New York, 1968).
    26. 26)
    27. 27)
      • 28. Gustavsen, B., Irwin, G., Mangerlod, R., Brandt, D., Kent, K.: ‘Transmission line models for the simulation of interaction phenomena between parallel AC and DC overhead lines’. Int. Power System Transactions Conf., Budapest, Hungary, 1999.
    28. 28)
      • 24. Chrysochos, A.I., Papadopoulos, T.A., Papagiannis, G.K.: ‘Analysis of the propagation characteristics of single-core cables from experimental results using modal decomposition’. Int. University Power Engineering Conf., Dublin, Ireland, 2013.
    29. 29)
    30. 30)
      • 33. Dommel, H.W., Meyer, W.S.: ‘Computation of electromagnetic transients’. Proc. IEEE, 1974, vol. 62, no. 7.
    31. 31)
      • 18. Ametani, A., Nagaoka, N., Baba, Y., Ohno, T.: ‘Power system transients – theory and applications’ (CRC Press, 2014).
    32. 32)
      • 5. Kaloudas, Ch.G., Papadopoulos, T.A., Papagiannis, G.K.: ‘Spectrum analysis of transient responses of overhead transmission lines’. UPEC 2010, Cardiff, Wales, 2010.
    33. 33)
    34. 34)
      • 19. Dang, N.D.: ‘Transient performance of crossbonded cable systems’. PhD thesis, UMIST, 1972.
    35. 35)
    36. 36)
      • 1. CIGRE Working Group 02 (SC33): ‘Guidelines for representation of network elements when calculating transients’, 1990.
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0948
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0948
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading