access icon free Bidirectional multilevel shunt compensator with simultaneous functionalities based on the conservative power theory for battery-based storages

Renewable energy and storage technologies have a meaningful growth in the past decades. The use of multilevel topologies within these technologies is being preferable chosen because of the better features over the conventional full bridge inverters when the applications involve high power processing. Moreover, digital control algorithms make possible power electronics converters to be operated in different manners without changing their structure. This study presents a bidirectional multilevel shunt compensator (BMSC) able to perform different and simultaneous tasks. There are seven possible modes of operation that a decision taker may demand to the BMSC. The control strategy is based on the conservative power theory. The phase-locked loop, the proportional–integral tuning procedure and how the decision taker works are presented. The seven operation modes were experimentally verified and the BMSC efficacy is proved.

Inspec keywords: invertors; digital control; phase locked loops

Other keywords: simultaneous functionalities; full bridge inverters; decision taker; digital control algorithms; renewable energy technologies; proportional-integral tuning procedure; conservative power theory; bidirectional multilevel shunt compensator; storage technologies; PLL; power electronics converters; high power processing; operation modes; phase-locked loop; multilevel topologies; BMSC efficacy

Subjects: Control of electric power systems; DC-AC power convertors (invertors)

References

    1. 1)
    2. 2)
      • 28. Bonaldo, J.P., Pomilio, J.A.: ‘Multi-functional use of single-phase power converters’. 2013 IEEE PES Conf. on Innovative Smart Grid Technologies Latin America, Sao Paulo, Brazil, April 2013, pp. 16.
    3. 3)
      • 29. Bonaldo, J.P., Braga, F.N., Pomilio, J.A.: ‘Single-phase multifunctional grid interface converter without grid sincronization’. 2013 Int. Conf. on Clean Electrical Power, Alghero, Italy, June 2013, pp. 306312.
    4. 4)
      • 13. Busarello, T.D.C., Pomilio, J.A.: ‘Bidirectional multilevel shunt compensator with simultaneous functionalities based on the conservative power theory’. Seventh IET Int. Conf. on Power Electronics, Machines and Drives, Manchester, England, April 2014, pp. 16.
    5. 5)
      • 21. Yousefi-Talouki, M., Ramezanpour, P.: ‘Direct active and reactive power control of 3-level NPC-fed DFIG considering power ripple minimisation’, Int. J. Ind. Electron. Drives (IJIED), 2014, 1, (3), pp. 174190.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 15. Sawant, R.R., Chandorkar, M.C.: ‘A multi-functional four-leg grid connected compensator’. Power Conversion Conf., Nagoya, Japan, April 2007, pp. 10851092.
    12. 12)
    13. 13)
      • 34. Kreyzig, E.: ‘Advanced engineering mathematics’ (John Wiley & Sons, Inc., 1999).
    14. 14)
      • 38. Yazdani, A., Iravani, R.: ‘Voltage-sourced converters in power system’ (Wiley, 2010, 1st edn.).
    15. 15)
    16. 16)
    17. 17)
      • 3. European Technology Platform SmartGrids: ‘Vision and strategy for Europe's electricity networks of the future’ (Directorate-General for Research Sustainable Energy Systems, 2006).
    18. 18)
      • 36. Escobar, G., Valdez, A.A., Martinez-Montejano, M.F., et al: ‘A model-based controller for the cascade multilevel converter used as a shunt active filter’. 42nd IAS Annual Meeting Industry Applications Conf., September 2007, pp. 18371843.
    19. 19)
      • 31. Brandao, D.I., Marafão, F.P., Paredes, H.K.M., et al: ‘Inverter control strategy for DG systems based on the conservative power theory’. Energy Conversion Congress and Exposition, Denver, USA, September 2013, pp. 32833290.
    20. 20)
      • 40. Tedeschi, E., Tenti, P., Mattavelli, P.: ‘Synergistic control and cooperative operation of distributed harmonic and reactive compensators’. IEEE Power Electronics Specialists Conf., Rhodes, Greece, June 2008, pp. 654660.
    21. 21)
      • 35. Sirisukprasert, S., Huang, A.Q., Lai, J.-S.: ‘Modeling, analysis and control of cascaded-multilevel converter-based STATCOM’. IEEE Power Engineering Society General Meeting, July 2003, pp. 25612568.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 14. Li, F., Wang, X., Chen, Z., Zhang, X., et al: ‘A control strategy for multi-functional converter to improve grid power quality’. 37th Annual Conf. on IEEE Industrial Electronics Society, Melbourne, Australia, November 2011, pp. 790795.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 9. Seo, H.R., Jang, S.J., Kim, G.H., et al: ‘Hardware based performance analysis of a multi-function single-phase PV-AF system’. IEEE Energy Conversion Congress and Exposition, San Jose, USA, September 2009, pp. 22132217.
    31. 31)
      • 27. Paredes, H.K.M., Costabeber, A., Tenti, P.: ‘Application of conservative power theory to cooperative control of distributed compensators in smart grids’ (International School on Nonsinusoidal Currents and Compensation, 2010), pp. 190196.
    32. 32)
      • 39. Tenti, P., Trombetti, D., Costabeber, A., et al: ‘Distribution loss minimization by token ring control of power electronic interfaces in residential micro-grids’. 2010 IEEE Int. Symp. on Industrial Electronics (ISIE), Bari, Italy, July 2010, pp. 23772381.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 2. United States Department of Energy (DOE): ‘The smart grid: an introduction’ (Washington, DC, 2003).
    37. 37)
    38. 38)
      • 37. Chong, H., Zhaoning, Y., Huang, A.Q., et al: ‘Modelling and control of a cascade-multilevel converter-based STATCOM for electric arc furnace flicker mitigation’. 31st Annual Conf. of Industrial Electronics Society IECON, November 2005, pp. 883888.
    39. 39)
      • 24. Tenti, P., Mattavell, P.: ‘A time-domain approach to power term definitions under non-sinusoidal conditions’, L'Energ. Elettr., 2004, 81, pp. 7584.
    40. 40)
      • 32. Souza, W.A., Liberado, E.V., da Silva, L.C.P., et al: ‘Load analyser using conservative power theory’ (International School on Nonsinusoidal Currents and Compensation, 2013), pp. 16.
    41. 41)
      • 33. Guerreiro, J.F., Pomilio, J.A., Busarello, T.D.C.: ‘Design of a multilevel active power filter for more electrical airplane variable frequency systems’. IEEE Aerospace Conf., Big Sky, USA, March 2013, pp. 112.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0900
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0900
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading