access icon free Instantaneous positive-sequence current applied for detecting voltage sag sources

This study proposes a method for detecting voltage-sag sources, using only the measurements of line currents. Instantaneous symmetrical components are introduced for accommodating the transient nature of voltage sag events, where a magnitude and phase change in the instantaneous positive-sequence current is used as a criterion. The proposed method is compared with conventional phasor-based methods known from the literature. All the discussed methods for voltage sag source detection, both the already known and the proposed ones, were evaluated by applying extensive simulations, laboratory tests and field testing. When compared with the phasor-based methods, the proposed method showed faster response, a higher degree of confidence and superior effectiveness, especially for transient voltage sag events in networks with distributed generation and active loads.

Inspec keywords: distributed power generation; power generation faults; electric current measurement; transients; power supply quality

Other keywords: instantaneous symmetrical components; distributed generation; line current measurement; phasor-based method; laboratory tests; fleld testing; active loads; transient voltage sag events; instantaneous positive sequence current; voltage sag source detection

Subjects: Distributed power generation; Current measurement; Power supply quality and harmonics

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 42. Hai-yan, D., Qian, G., Qing-quan, J., et al: ‘An algorthithm to locate power-quality disturbance source based on disturbance measures and information fusion theory’. Fourth Int. Conf. Electric. Utility Deregulation Restructure Power Technology, 2011, pp. 58995.
    6. 6)
      • 1. IEEE Stdandard 1159-2009: ‘Recommended practice for monitoring electric power quality’, 2009.
    7. 7)
    8. 8)
      • 26. Barrera, V., López, B., Sánchez, J.: ‘Voltage sag source location from extracted rules using subgroup discovery’, Artif. Intell. Res. Dev., 2008, 148, pp. 225235.
    9. 9)
    10. 10)
      • 46. Gasquet, C., Witomski, P.: ‘Fourier analysis and applications: filtering, numerical computation, wavelets’ (Springer, NY, 1999).
    11. 11)
      • 28. Leborgne, R.C., Karlsson, D.: ‘Voltage sag source location based on voltage measurements only’, Electr. Power Qual. Utilis., 2008, 9, (1), pp. 2530.
    12. 12)
      • 31. Leborgne, R.C., Karlsson, D., Daalder, J.: ‘Voltage sag source location methods performance under symmetrical and asymmetrical fault conditions’. IEEE/PES Transmission Distribution Conf. Expo.: Latin America, 2006, pp. 1116.
    13. 13)
      • 47. Lobos, T., Kozina, T., Koglin, H.-.J.: ‘Power system harmonics estimation using linear least squares method and SVD’, IEE Proc.: Gener., Transm. Distrib., 2001, 148, (6), pp. 567572.
    14. 14)
      • 33. Meléndez, J., Berjaga, X., Herraiz, S., et al: ‘Classification of sags accordnig to their origin based on the waveform similarity’. IEEE/PES Transmission Distribution Conf. Expo.: Latin America, 2008, pp. 796801.
    15. 15)
    16. 16)
      • 49. International Standard IEC 60044-6, Instrument transformers-Part 6: ‘Requirements for protective current transformers for transient performance’, Edition 1.0, 1992.
    17. 17)
      • 3. Bollen, M.J.H.: ‘Understanding power quality problems: voltage sags and interruption’ (IEEE Press, NY, 2000).
    18. 18)
      • 2. European standard, CENELEC: ‘EN 50160 Voltage characteristics of electricity supplied by public distribution systems’, 2007.
    19. 19)
      • 43. Kazemi, A., Mohamed, A., Shareef, H.: ‘Tracking the voltage sag location using multivariable regression model’, Int. Rev. Electr. Eng., 2011, 6, (4), pp. 18531861.
    20. 20)
    21. 21)
    22. 22)
      • 21. Shao, Z., Peng, J., Kang, J.: ‘Locating voltage sag source with impedance measurement’. Int. Conf. Power System Technology, 2010.
    23. 23)
      • 32. Leborgne, R.C.: ‘Voltage sags: Single event characterisation, system performance and source location’. PhD Thesis, Chalmers University of Technology, Göteborg, Sweden, 2007.
    24. 24)
    25. 25)
      • 27. Gomez, J., Tourn, D., Felici, M.: ‘A novel methodology to locate originating points of voltage sags in electric power systems’. 18th Int. Conf. on Electric Distribution CIRED, 2005.
    26. 26)
      • 36. Núñez, V.B.: ‘Automatic diagnosis of voltage disturbances in power distribution networks’. PhD Thesis, Universitat de Girona, Girona, Spain, 2012.
    27. 27)
    28. 28)
      • 13. Leborgne, R.C., Makaliki, R.: ‘Voltage sag source location at grid interconnections: a case study in the Zambian system’. PowerTech, IEEE Lausanne, 2007, pp. 18521857.
    29. 29)
      • 35. Hanzelka, Z., Słupski, P., Piatek, K., et al: ‘Single-point methods for location of distortion, unbalance, voltage fluctuation and dips sources in a power system’. InTech Power Quality: Monit., Analysis Enhancement, 2011.
    30. 30)
      • 41. Latheef, A., Negnevitsky, M., Faybisovich, V.: ‘Voltage sag source location identification’. 20th Int. Conf. Electric Distribution CIRED, 2009.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 22. Kanokbannakorn, W., Saengsuwan, T., Sirisukprasert, S.: ‘Unbalanced voltage sag source location identification based on superimposed quantities and negative sequence’. Eighth Int. Conf. Electrical Engineering/Electronics, Computer, Telecommunication Information Technology, 2011, pp. 617620.
    35. 35)
    36. 36)
    37. 37)
      • 37. Mohamed, A., Shareef, H., Faisal, M.F.: ‘Performance comparison of voltage sag source detection methods for power quality diagnosis’, Int. Rev. Electr. Eng., 2012, 7, (2), pp. 41634171.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
      • 15. Faisal, M.F., Mohamed, A., Shareef, H.: ‘A novel voltage sag source detection method using TRF technique’, Int. Rev. Electr. Eng., 2010, 5, (5), pp. 23012309.
    43. 43)
    44. 44)
      • 40. Liao, H.: ‘Voltage sag source location in high-voltage power transmission networks’. IEEE/PES Conversion Delivery Electric Energy 21st Century, 2008.
    45. 45)
    46. 46)
      • 44. Weng, G.Q., Zhang, Y.B., He, H.B.: ‘Novel location algorithm for power quality disturbance source using chain table and matrix operation’, Int. Rev. Electr. Eng., 2011, 6, (6), pp. 27462753.
    47. 47)
    48. 48)
    49. 49)
    50. 50)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0483
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0483
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading