access icon free Balanced and unbalanced inverter strategies in battery storage systems for low-voltage grid support

The design of battery storage systems includes technology choices for the batteries and for the inverter. The impact of the inverter design on the optimal design and operation of the storage system has not been analysed before. Therefore four inverter designs are compared with this research. The most basic inverter model assumes only symmetric active power exchange; the most advanced inverter model allows interphase active power transfer and reactive power control. A multi-objective optimisation method is used, to visualise the trade-offs between two technical objective functions for cycling control – voltage regulation and peak power reduction – for a given annual cost. The method is applied to a real-world scenario, based on an existing feeder in a residential part of a city in Flanders, Belgium. Internal losses and losses in the grid are quantified for the different designs. Modelling a battery storage system purely as a finite source/sink of active power in a low-voltage grid, strongly underestimates the potential because of the existing phase unbalance. Counteracting phase unbalance through an inter-phase power transfer capable inverter, even more so than adding reactive power control, improves the performance of battery storage systems.

Inspec keywords: invertors; power grids; battery storage plants; voltage control; optimisation

Other keywords: inverter design; cycling control; low-voltage grid; reactive power control; phase unbalance; voltage regulation; peak power reduction; interphase active power transfer; interphase power transfer capable inverter; for low-voltage grid support; multiobjective optimisation method; unbalanced inverter strategies; battery storage systems; symmetric active power exchange

Subjects: Optimisation techniques; Voltage control; Secondary cells; Optimisation techniques; DC-AC power convertors (invertors); Control of electric power systems

References

    1. 1)
      • 17. Barnes, A.K., Balda, J.C., Escobar-meja, A., Geurin, S.O.: ‘Placement of energy storage coordinated with smart PV inverters’. IEEE PES Innovative Smart Grid Technologies, Washington DC, USA, 2012, pp. 17.
    2. 2)
      • 8. Geth, F., Tant, J., De Rybel, T., Tant, P., Six, D., Driesen, J.: ‘Techno-economical and life expectancy modeling of battery energy storage systems’. Twenty-First Int. Conf. Exhibition Electricity Distribution, Frankfurt, Germany, 2011, vol. 1106.
    3. 3)
    4. 4)
    5. 5)
      • 26. Dupont, B., Vingerhoets, P., Tant, P., et al: ‘LINEAR breakthrough project: large-scale implementation of smart grid technologies in distribution grids’. IEEE PES Innovative Smart Grid Technologies, Berlin, Germany, 2012.
    6. 6)
      • 3. Ulbig, A., Andersson, G.: ‘On operational flexibility in power systems’. IEEE Power and Energy Society General Meeting, 2012, San Diego, USA, 2012.
    7. 7)
      • 14. Doughty, D.H., Butler, P.C., Akhil, A.A., Clark, N.H., Boyes, J.D.: ‘Batteries for large-scale stationary electrical energy storage’, Electrochem. Soc. Interface, 2010, 19, (3), pp. 4953.
    8. 8)
      • 18. Gabash, A., Li, P.: ‘Active-reactive optimal power flow for low-voltage networks with photovoltaic distributed generation’. Second IEEE Energycon Conf. Exhibtion, 2012, pp. 381386.
    9. 9)
    10. 10)
    11. 11)
      • 20. Song, Y., Zhang, F., Hu, Z.: ‘Mixed-integer linear model for transmission expansion planning with line losses and energy storage systems’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 919928, URL http://www.digital-library.theiet.org/content/journals/10.1049/iet-gtd.2012.0666.
    12. 12)
      • 30. ‘WP1.3 Parameter Manual’, (2010), URL www.g4v.eu.
    13. 13)
    14. 14)
      • 10. Xu, Y., Singh, C.: ‘Multi-objective design of energy storage in distribution systems based on modified particle swarm optimization’. IEEE Power and Energy Society General Meeting, San Diego, USA, 2012, pp. 18.
    15. 15)
      • 23. Weckx, S., Gonzalez, C., Tant, J., De Rybel, T., Driesen, J.: ‘Parameter identification of unknown radial grids for theft detection’. IEEE PES Innovative Smart Grid Technologies, Berlin, Germany, 2012, pp. 16.
    16. 16)
      • 7. Braun, M., Stetz, T.: ‘Multifunctional photovoltaic inverters economic potential of grid-connected multifunctional PV-battery-systems in industrial environments’. Twenty-Third Photovoltaic Solar Energy Conf., Valencia, Spain, September 2008, pp. 18.
    17. 17)
    18. 18)
      • 27. Labeeuw, W., Deconinck, G.: ‘Customer sampling in a smart grid pilot’. IEEE Power and Energy Society General Meeting, San Diego, USA, 2012, pp. 17.
    19. 19)
    20. 20)
      • 32. Löfberg, J.: ‘YALMIP: A toolbox for modeling and optimization in MATLAB’. 2004 IEEE Int. Symp. Computer Aided Control System Design, Taipei, Taiwan, 2004, pp. 284289.
    21. 21)
    22. 22)
    23. 23)
      • 24. ‘Kabels voor ondergrondse aanleg, met synthetische isolatie en versterkte mantel (type 1kv)’, 1975.
    24. 24)
    25. 25)
    26. 26)
      • 29. ‘Voltage characteristics of electricity supplied by public electricity networks’, July 2010.
    27. 27)
    28. 28)
    29. 29)
      • 4. Rastler, D.M.: ‘Electric energy storage technology options: a white paper primer on applications, costs, and benefits’. Technical Report 1020676, Electric Power Research Institute, Palo Alto, CA, 2010.
    30. 30)
    31. 31)
      • 22. Nourai, A., Sastry, R.: ‘A vision & strategy for deployment of energy storage in electric utilities’. IEEE Power and Energy Society General Meeting, 2010, pp. 14.
    32. 32)
    33. 33)
      • 11. Geth, F., Tant, J., Haesen, E., Driesen, J., Belmans, R.: ‘Integration of energy storage in distribution grids’. IEEE Power and Energy Society General Meeting, Minneapolis, MN, 2010, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0341
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0341
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading