access icon free Directional relays without voltage sensors for distribution networks

In this study, algorithms for directional relays using only current measurements are presented. Developed for radial distribution networks, these algorithms will determine fault direction based on ratios between variations of sequence currents during and before faults: ΔI 2I 0 ratio for line-to-ground faults and the ΔI 2I 1 ratio for line-to-line faults. The ratios are used as input of a support vector machine classifier, which was trained beforehand thanks to simulation tools. The classifier classifies ratios into two categories, according to the fault location: upstream or downstream towards the relay. Test results from simulations show good performances of the algorithms in most cases, with the presence of different distributed generation technologies. Moreover, impact of certain factors on algorithms, such as measurement errors, high-impedance faults or network reconfiguration, is studied. Finally, the implementation of algorithms is also discussed.

Inspec keywords: relay protection; fault location; distributed power generation; electric current measurement; power distribution protection; support vector machines; power distribution faults

Other keywords: fault location; line-to-ground faults; distributed generation; voltage sensors; radial distribution networks; network reconfiguration; line-to-line faults; current measurements; high-impedance faults; measurement errors; fault direction; support vector machine classifier; directional relays

Subjects: Distribution networks; Current measurement; Power system protection

References

    1. 1)
      • 24. ERDF-NOI-RES_07E: ‘Description of public electricity distribution networks’ (French, 2008).
    2. 2)
      • 14. Le, T.D., Petit, M.: ‘Contribution des moyens de production dispensés aux courants de défaut. Modélisation des moyens de production et algorithmes de détection de défaut’. PhD thesis, SUPELEC, 2014.
    3. 3)
      • 3. Ukil, A., Deck, B., Shah, V.H.: ‘Smart distribution protection using current-only directional overcurrent relay’. Proc. IEEE PES Conf. Innovative Smart Grid Technologies, Gothenburg, Sweden, October 2010, pp. 17.
    4. 4)
    5. 5)
    6. 6)
      • 21. Muljadi, E., Yildirim, D., Batan, T., Butterfield, C.P.: ‘Understanding the unbalanced-voltage problem in wind turbine generation’. IEEE IAS Annual Meeting 34th Proc. Conf. Industry Applications, Phoenix, AZ, 1999, pp. 13591365.
    7. 7)
      • 1. Ukil, A., Kamala, A.R.: ‘Current only directional overcurrent protection for distribution automation using neural network’. Proc. IEEE PES Conf. Tenth PowerTech, Grenoble, France, June 2013, pp. 16.
    8. 8)
      • 25. HN 52-S-25: ‘Impedance of compensative grounding for rural and mixed MV networks’ (French, 2001).
    9. 9)
      • 23. Matlab R2012b Documentation: ‘Three-Phase Programmable Voltage Source’. Available at http://www.mathworks.fr/fr/help/physmod/powersys/ref/threephaseprogrammablevoltagesource.html.
    10. 10)
    11. 11)
      • 26. B.61–21: ‘Protection of MV distribution networks – principles’ (French, 1994).
    12. 12)
    13. 13)
      • 13. Le, T.D., Petit, M.: ‘Directional relays for distribution networks with distributed generation’. Proc. Int. Conf. Developments in Power System Protection 11th, Birmingham, UK, April 2012, pp. 16.
    14. 14)
      • 8. Fraisse, J.-L., Horson, J.-P.: ‘Technical considerations of distributed generation interconnection in distribution systems’. Technique de l'ingénieur D4242, French, 2010.
    15. 15)
      • 7. Deuse, J., Grenard, S., Bollen, M.H.J., Häger, M., Sollerkvist, F.: ‘Effective impact of DER on distribution system protection’. Proc. CIRED, Vienna, Austria, May 2007, pp. 14.
    16. 16)
      • 11. Anderson, P.M.: ‘Analysis of faulted power systems’ (IEEE Press Series on Power Engineering, 1995).
    17. 17)
      • 22. NF EN 50 160: ‘Voltage Characteristics in Public Distribution Systems’, 1995.
    18. 18)
    19. 19)
      • 5. Jecu, C., Raison, B., Caire, R., et al: ‘MV distribution protection schemes to reduce customers and DGs interruptions’. Proc. IEEE PowerTech, Trondheim, Norway, June 2011, pp. 17.
    20. 20)
      • 19. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: ‘A practical guide to support vector classification’. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
    21. 21)
    22. 22)
      • 16. Bishop, C.M.: ‘Pattern recognition and machine learning’ (Springer, 2006).
    23. 23)
    24. 24)
      • 17. Matlab R2012b Documentation: ‘Support Vector Machines (SVM)’. Available at http://www.mathworks.fr/fr/help/bioinfo/ug/support-vector-machines-svm.html.
    25. 25)
    26. 26)
      • 27. ABB: ‘Instrument Transformers, Application Guide’, 2009.
    27. 27)
    28. 28)
      • 6. Kauhaniemi, K., Kumpulainen, L.: ‘Impact of distributed generation on the protection of distribution networks’. Proc. Int. Conf. Developments in Power System Protection Eighth, April 2004, pp. 315318.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0308
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0308
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading