access icon free Optimal planning of static and dynamic reactive power resources

This study proposes an optimisation-based method of planning static and dynamic VAR sources for the enhancement of electric power transmission systems under a set of contingencies. The overall objective function is to minimise the total installation cost of static and dynamic VAR sources, while satisfying the requirements of long-term voltage stability margin and transient voltage dip under a contingency list. The backward/forward search algorithm with linear complexity is used to select candidate locations for reactive power compensation. Optimal locations and amounts of static and dynamic VAR sources are obtained by solving a sequence of mixed integer programming problems. The New England 39 bus system is adopted to illustrate the effectiveness of the proposed method. The systematic applicability of the proposed method to a large scale practical system is also illustrated using a 16173-bus U.S. Eastern Interconnection system.

Inspec keywords: integer programming; power transmission planning; reactive power; search problems

Other keywords: optimal planning; electric power transmission systems enhancement; optimisation-based method; systematic applicability; linear complexity; dynamic reactive power resources; transient voltage dip; static reactive power resources; static VAR sources planning; mixed integer programming problems; installation cost; dynamic VAR sources planning; voltage stability margin; New England 39 bus system; 16173-bus US Eastern Interconnection system; reactive power compensation; contingency list; backward-forward search algorithm

Subjects: Combinatorial mathematics; Power transmission, distribution and supply; Power system planning and layout; Optimisation techniques

References

    1. 1)
      • 19. Mathur, R.M., Varma, R.K.: ‘Thyristor-based FACTS controllers for electrical transmission systems’ (John Wiley & Sons, Inc., New York, 2002).
    2. 2)
    3. 3)
      • 4. Mittelstadt, W., Taylor, C.W., Klinger, M., Luini, J., McCalley, J.D., Mechenbier, J.: ‘Voltage instability modeling and solutions as applied to the Pacific Intertie’. CIGRE Proc., paper 38-230, 1990.
    4. 4)
    5. 5)
      • 36. Liu, H., Jin, L., McCalley, J.D., Kumar, R., Ajjarapu, V.: ‘Linear complexity search algorithm to locate shunt and series compensation for enhancing voltage stability’. Proc. 2005 North American Power Symp., pp. 344350.
    6. 6)
      • 1. U.S.-Canada Power System Outage Task Force (2004, April). Final report on the August 14, 2003 blackout in the United States and Canada: causes and recommendations. Available at: http://www.reports.energy.gov/BlackoutFinal-Web.pdf.
    7. 7)
    8. 8)
    9. 9)
      • 9. Taylor, C.W., Erickson, D.C., Martin, K.E., Wilson, R.E., Venkatasubramanian, V.: ‘WACS – wide-area stability and voltage control systems: R&D and online demonstration’. Proc. IEEE, May 2005, vol. 93, pp. 892906.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 14. Kolluri, S., Kumar, A., Tinnium, K., Daquila, R.: ‘Innovative Approach for solving dynamic voltage stability problem on the Entergy system’. Proc. 2002 IEEE Power Engineering Society Summer Meeting, pp. 988993.
    15. 15)
      • 2. Van Cutsem, T., Vournas, C.: ‘Voltage stability of electric power systems’ (Kluwer Academic Publishers, Boston, 1998).
    16. 16)
    17. 17)
      • 27. Shoup, D.J., Paserba, J.J., Taylor, C.W.: ‘A survey of current practices for transient voltage dip/sag criteria related to power system stability’. Proc. 2004 IEEE Power Engineering Society Power Systems Conference and Exposition, pp. 11401147.
    18. 18)
      • 8. Western Electricity Coordinating Council (2004, April). Emergency reporting and restoration procedures. WECC, Salt Lake City, UT. Available at: http://www.wecc.biz/documents/library/RCS/RC001_Emerg_Reporting_204-21-04_WO%20diagrams.pdf.
    19. 19)
      • 18. Kolluri, V.S., Mandal, S.: ‘Determining reactive power requirements in the southern part of the entergy system for improving voltage security – a case study’. Proc. 2006 IEEE Power Engineering Society General Meeting.
    20. 20)
    21. 21)
      • 12. CIGRE Task Force 38-02-12: ‘Criteria and countermeasures for voltage collapse’, Electra, 1995, 162, pp. 159167.
    22. 22)
      • 17. CIGRE Task Force 38-01-03: ‘Planning against voltage collapse’, Electra, 1987, 111, pp. 5575.
    23. 23)
      • 11. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    24. 24)
      • 33. Frank, P.M.: ‘Introduction to system sensitivity theory’ (Academic Press, New York, 1978).
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 16. Diaz de Leon, IIJ.A., Taylor, C.W.: ‘Understanding and solving short-term voltage stability problems’. Proc. 2002 IEEE Power Engineering Society Summer Meeting, pp. 745752.
    29. 29)
      • 5. Anderson, P.M., Farmer, R.G.: ‘Series compensation of power systems’ (PBLSH! Inc., Encinitas, 1996).
    30. 30)
      • 26. IEC 61000-4-30: ‘Electromagnetic Compatibility (EMC) – Part 4-30: Testing and Measurement Techniques – Power Quality Measurement Methods’. February 2003.
    31. 31)
      • 31. van der Schaft, A., Schumacher, H.: ‘An introduction to hybrid dynamical systems’ (Springer-Verlag, London, UK, 2000).
    32. 32)
      • 39. Bollen, M.H.J.: ‘Understanding power quality problems – voltage sags and interruptions’ (Wiley-IEEE Press, New York, 1999).
    33. 33)
      • 38. Pai, M.A.: ‘Energy function analysis for power system stability’ (Kluwer Academic Publishers, Boston, 1989).
    34. 34)
      • 15. Kolluri, V.S., Mandal, S., Datta, S., et al: ‘Application of static var compensator in entergy system to address voltage stability issues – planning and design considerations’. Proc. 2005/2006 IEEE Power Engineering Society Transmission and Distribution Conf., pp. 14071411.
    35. 35)
      • 3. Taylor, C.W.: ‘Power system voltage stability’ (McGraw-Hill, New York, 1994).
    36. 36)
      • 7. CIGRE Task Force 38-02-19: ‘System protection schemes in power networks’ (CIGRE Publication, 2001).
    37. 37)
      • 37. Krishnan, V., Liu, H., McCalley, J.: ‘Coordinated reactive power planning against power system voltage instability’. Proc. 2009 IEEE Power Systems Conf. and Exposition, pp. 18.
    38. 38)
      • 40. Stefopoulos, G.K., Meliopoulos, A.P.: ‘Induction motor load dynamics: impact on voltage recovery phenomena’. Proc. 2006 IEEE Transmission and Distribution Conf. and Exposition, pp. 752759.
    39. 39)
      • 13. Van Cutsem, T.: ‘Voltage instability: phenomena, countermeasures, and analysis methods’. Proc. IEEE, February 2000, vol. 88, pp. 208227.
    40. 40)
      • 28. Western Electricity Coordinating Council (2013, August). System Performance TPL-001-WECC-RBP-2.1 Regional Business Practice. Available at: http://www.wecc.biz/library/Documentation%20Categorization%20Files/Regional%20Business%20Practices/TPL-001-WECC-RBP-2.1.pdf.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2014.0081
Loading

Related content

content/journals/10.1049/iet-gtd.2014.0081
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading