© The Institution of Engineering and Technology
In this study, a practical method is proposed for determining the distance and the section of fault in power distribution system (PDS). In the suggested method, at first the possible fault points are determined using a novel impedancebased fault location method. Since the number of these points may be more than one, thus two methods are proposed for determining the real location of fault. In the first method, the measured and recorded samples of voltages at the beginning of feeder for actual fault are compared with the stored samples of voltages which are obtained from simulating of fault at the possible fault points. The one with highest matching is the real location of fault. In the second method, frequency spectrum (FS) of voltage is defined as a suitable criterion for this purpose. Therefore the real fault point is determined by comparing and matching the FS of voltages obtained from the simulated faults and the recorded voltage for actual fault. The performance of the proposed method is evaluated in a real feeder in distribution network of Iran considering different types of faults, fault resistances, fault inception angles, real instrument transformer models and X/R ratio changes of upstream PDS network. The obtained results show that the performance of the proposed method is quite satisfactory and its accuracy is very high.
References


1)

1. Yu, C.Y.: ‘A discrete Fourier transformbased adaptive mimic phasor estimator for distance relaying applications’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 3387–3395.

2)

Z.M. Radojevic
.
New one terminal digital algorithm for adaptive reclosing and fault distance calculation on transmission lines.
IEEE Trans. Power Deliv.
,
3 ,
1231 
1237

3)

B. Bhalja ,
R.P. Maheshwari
.
High resistance faults on two terminal parallel transmission line: analysis, simulation studies, and an adaptive distance relaying scheme.
IEEE Trans. Power Deliv.
,
2 ,
801 
812

4)

4. GarcíaGracia, M., Halabi, N. E., Borroy, S., Urtasun, L.G.D.: ‘Phase jump correction factor applied to the differential equation algorithm by an adaptive scheme’, IET Gener. Trans. Distrib., 2011, 5, (2), pp. 266–275 (doi: 10.1049/ietgtd.2010.0247).

5)

5. Bo, Z.Q., Weller, G., Redfern, M.A.: ‘Accurate fault location technique for distribution system using faultgenerated highfrequency transient voltage signals’, IEE Proc., Gener. Transm. Distrib., 1999, 146, (1), pp. 73–79 (doi: 10.1049/ipgtd:19990074).

6)

6. Sadeh, J., Bakhshizadeh, E., Kazemzadeh, R.: ‘A new fault location algorithm for radial distribution systems using modal analysis’, Electr. Power Energy Syst., 2013, 45, pp. 271–278 (doi: 10.1016/j.ijepes.2012.08.053).

7)

J. Zhu ,
D.L. Lubkeman ,
A.A. Girgis
.
Automated fault location and diagnosis on electric power distribution feeders.
IEEE Trans. Power Deliv.
,
2 ,
801 
809

8)

8. Das, R.: ‘Determining the location of faults in distribution systems’. , University of Saskatchewan, Saskatoon, SK, Canada, 1998.

9)

J. MoraFlòrez ,
J. Melendez ,
G. CarrilloCaicedo
.
Comparison of impedance based fault location methods for power distribution systems.
Electr. Power Syst. Res.
,
4 ,
657 
666

10)

11)

11. Chen, W.H., ChihWen, L., MenShen, T.: ‘Fast fault section estimation in distribution substations using matrixbased cause–effect networks’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 522–527 (doi: 10.1109/61.956731).

12)

12. Short, T., Kim, J., Melhorn, C.: ‘Update on distribution system fault location technologies and effectiveness’. 20th Int. Conf. Electricity Distribution Prague, 2009, pp. 8–11.

13)

13. Mei, N., Shi, D., Yang, Z., Duan, X.: ‘A matrixbased fault section estimation algorithm for complex distribution systems’. University Power Engineering Conf., UK, 2007, pp. 284–289.

14)

14. Oliveira, K.R.C., Salim, R.H., Filomina, A.D., Resener, M., Bretas, S.B.: ‘Unbalanced underground distribution systems fault detection and section estimation’. ICIC2007, Germany, 2007, (4682) pp. 1054–1065.

15)

15. Dashti, R., Sadeh, J.: ‘A new method for fault section estimation in distribution network’. Int. Conf. Power System Technology (POWERCON2010), China, 2010, pp. 1–5.

16)

16. MoralesEspaña, G., MoraFlorez, J., VargasTorres, H.: ‘Elimination of multiple estimation for fault location in radial power systems by using fundamental singleend measurements’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 1382–1389 (doi: 10.1109/TPWRD.2009.2013400).

17)

17. Shakya, D., Singh, S.N.: ‘SVM based fault location and classification using fuzzy classifier for PQ monitoring’. IEEE Conf., 2008, pp. 1–8.

18)

18. Mora, J.J., Carrillo, G., Perez, L.: ‘Fault location in power distribution systems using ANFIS nets and current patterns’. Proc. IEEE Power Engineering Society Transmission Distribution Conf. Expo, Latin America, Venezuela, 2006, pp. 1–7.

19)

J. MoraFlorez ,
V. BarreraNunez ,
G. CarrilloCaicedo
.
Fault location in power distribution systems using a learning algorithm for multivariable data analysis.
IEEE Trans. Power Deliv.
,
3 ,
1715 
1721

20)

20. Thomas, D.W.P., Carvalho, R.J.O., Pereira, E.T.: ‘Fault location in distribution systems based on traveling waves’. IEEE Bologna Power Tech Conf., Bologna, Italy, 2003, pp. 23–26.

21)

21. Nouri, H., Wang, C., Davies, T.: ‘An accurate fault location technique for distribution lines with tapped loads using wavelet transform’, Proc. IEEE Porto Power Tech., 2001, 3, pp. 1–4.

22)

A. Borghetti ,
S. Corsi ,
C. Nucci ,
M. Paolone ,
L. Peretto ,
R. Tinarelli
.
On the use of continuouswavelet transform for fault location in distribution power systems.
Int. J. Electr. Power Energy Syst.
,
9 ,
608 
617

23)

A. Borghetti ,
M. Bosetti ,
M. Di Silvestro ,
C.A. Nucci ,
M. Paolone
.
Continuouswavelet transform for fault location in distribution power networks: definition of mother wavelets inferred from fault originated transients.
IEEE Trans. Power Syst.
,
380 
388

24)

M. PourahmadiNakhli ,
A. Safavi
.
Path characteristic frequencybased fault locating in radial distribution systems using wavelets and neural networks.
IEEE Trans. Power Deliv.
,
2 ,
772 
781

25)

25. GarcíaGracia, M., Montanes, A., Halabi, N. E., Comech, M.P.: ‘High resistive zerocrossing instant faults detection and location scheme based on wavelet analysis’, Electr. Power Syst. Res., 2012, 92, (1), pp. 138–144 (doi: 10.1016/j.epsr.2012.06.005).

26)

26. Dashti, R., Sadeh, J.: ‘Accuracy improvement of impedance based fault location method for power distribution network using distributedparameter line model’, Eur. Trans. Electr. Power (ETEP) J., 2012, .

27)

27. Dashti, R., Sadeh, J.: ‘Applying dynamic load estimation and distributed parameter line model to enhance the accuracy of impedance based fault location methods for power distribution networks’, Electr. Power Comput. Syst. J., 2013, 14, (1), pp. 1334–1362 (doi: 10.1080/15325008.2013.819950).

28)

28. Kezunovic, M., Abur, A., Kojovic, L., et al: ‘DYNATEST simulator for relay testing, part II: performance evaluation’, IEEE Trans. Power Deliv., 1992, 7, (3), pp. 1097–1103 (doi: 10.1109/61.141818).
http://iet.metastore.ingenta.com/content/journals/10.1049/ietgtd.2013.0633
Related content
content/journals/10.1049/ietgtd.2013.0633
pub_keyword,iet_inspecKeyword,pub_concept
6
6