access icon free Optimal power flow algorithm and analysis in distribution system considering distributed generation

This study investigates the optimal power flow (OPF) problem for distribution networks with the integration of distributed generation (DG). By considering the objectives of minimal line loss, minimal voltage deviation and maximum DG active power output, the proposed OPF formulation is a multi-object optimisation problem. Through normalisation of each objective function, the multi-objective optimisation is transformed to single-objective optimisation. To solve such a non-convex problem, the trust-region sequential quadratic programming (TRSQP) method is proposed, which iteratively approximates the OPF by a quadratic programming with the trust-region guidance. The TRSQP utilises the sensitivity analysis to approximate all the constraints with linear ones, which will reduce the optimisation scale. Active set method is utilised in TRSQP to solve quadratic programming sub-problem. Numerical tests on IEEE 33-, PG&E 69- and actual 292-, 588-, 1180-bus systems show the applicability of the proposed method, and comparisons with the primal–dual interior point method and sequential linear programming method are provided. The initialisation and convergence condition of the proposed method are also discussed. The computational result indicates that the proposed algorithm for DG control optimisation in distribution system is feasible and effective.

Inspec keywords: load flow; linear programming; distribution networks; quadratic programming; distributed power generation; sensitivity analysis; iterative methods

Other keywords: distribution networks; actual 588-bus system; primal-dual interior point method; distributed generation; optimal power flow algorithm; TRSQP method; nonconvex problem; distribution system analysis; objective function normalisation; trust-region sequential quadratic programming method; DG integration; OPF problem; sensitivity analysis; iterative approximation; sequential linear programming method; PG&E 69-bus system; IEEE 33-bus system; multiobject optimisation problem; maximum DG active power output; actual 1180-bus system; minimal line loss; single-objective optimisation; active set method; minimal voltage deviation; actual 292-bus system; DG control optimisation

Subjects: Interpolation and function approximation (numerical analysis); Optimisation techniques; Distributed power generation; Distribution networks

References

    1. 1)
      • 6. Monmoh, J.A., Zhu, J.: ‘Multi-area power systems economic dispatch using nonlinear convex network flow programming’, Electr. Power Syst. Res., 2001, 59, (1), pp. 1320 (doi: 10.1016/S0378-7796(01)00131-6).
    2. 2)
      • 26. Baran, B.E., Wu, F.F.: ‘Optimal capacitor placement on radial distribution systems’, IEEE Trans. Power Deliv., 1989, 4, (1), pp. 725734 (doi: 10.1109/61.19265).
    3. 3)
      • 16. Dall'Anese, E., Giannakis, G.B., Wollenberg, B.F.: ‘Optimization of unbalanced power distribution networks via semidefinite relaxation’. Proc. 44th North American Power System Symp., University of Illinois at Urbana-Champaign, USA, September 2012.
    4. 4)
      • 13. Bai, X., Wei, H., Fujisawa, K., Wang, Y.: ‘Semidefinite programming for optimal power flow problems’, Int. J. Electr. Power Energy Syst., 2008, 30, (6), pp. 383392 (doi: 10.1016/j.ijepes.2007.12.003).
    5. 5)
      • 15. Lam, A.Y., Zhang, B., Dominguez-Garcia, A., Tse, D.: ‘Optimal distributed voltage regulation in power distribution networks’, 2012, available at: http://arxiv.org/abs/1204.5226v1.
    6. 6)
      • 9. Liu, K., Li, Y., Sheng, W.: ‘The decomposition and computation method for distributed optimal power flow based on message passing interface (MPI)’, Int. J. Electr. Power Energy Syst., 2011, 33, (5), pp. 11851193 (doi: 10.1016/j.ijepes.2011.01.032).
    7. 7)
      • 10. Dolan, M.J., Davidson, E.M., Kockar, I., et al: ‘Distribution power flow management utilizing an online optimal power flow technique’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 790799 (doi: 10.1109/TPWRS.2011.2177673).
    8. 8)
      • 5. Berizzi, A., Delfanti, M., Marannino, P., et al: ‘Enhanced security-constrained OPF with FACTS devices’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 15971605 (doi: 10.1109/TPWRS.2005.852125).
    9. 9)
      • 17. Abril, I.P., González, J.A.: ‘VAR compensation by sequential quadratic programming’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 3641 (doi: 10.1109/TPWRS.2002.807049).
    10. 10)
      • 2. Grudinin, N.: ‘Reactive power optimization using successive quadratic programming method’, IEEE Trans. Power Syst., 1998, 13, (4), pp. 12191225 (doi: 10.1109/59.736232).
    11. 11)
      • 25. Biegler, L.T., Nocedal, J., Schmid, C.: ‘Numerical experience with a reduced Hessian method for large scale constrained optimization’, Comput. Optim. Appl., 2000, 15, (1), pp. 4567 (doi: 10.1023/A:1008723031056).
    12. 12)
      • 19. Wang, M., Liu, S.: ‘A trust region interior point algorithm for optimal power flow problems’, Int. J. Electr. Power Energy Syst., 2005, 27, (4), pp. 293300 (doi: 10.1016/j.ijepes.2004.12.001).
    13. 13)
      • 24. Ochoa, L.F., Harrison, G.P.: ‘Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 198205 (doi: 10.1109/TPWRS.2010.2049036).
    14. 14)
      • 27. Capitanescu, F., Wehenkel, L.: ‘Redispatching active and reactive powers using a limited number of control actions’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 12211230 (doi: 10.1109/TPWRS.2010.2102371).
    15. 15)
      • 4. Lin, X., David, A.K., Yu, C.W.: ‘Reactive power optimization with voltage stability consideration in power market systems’, IEE Proc. Gener. Transm. Distrib., 2003, 150, (3), pp. 305310 (doi: 10.1049/ip-gtd:20030198).
    16. 16)
      • 8. Bakirtzis, A.G., Biskas, P.N., Zoumas, C.E., et al: ‘Optimal power flow by enhanced genetic algorithm’, IEEE Trans. Power Syst., 2002, 17, (2), pp. 229236 (doi: 10.1109/TPWRS.2002.1007886).
    17. 17)
      • 28. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219 (doi: 10.1109/TPWRS.2010.2051168).
    18. 18)
      • 21. Ochoa, L.F., Dent, C.J., Harrison, G.P.: ‘Distribution network capacity assessment: variable DG and active networks’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 8795 (doi: 10.1109/TPWRS.2009.2031223).
    19. 19)
      • 12. Capitanescu, F., Wehenkel, L.: ‘Optimal power flow computations with a limited number of controls allowed to move’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 586587 (doi: 10.1109/TPWRS.2009.2036461).
    20. 20)
      • 3. Granelli, G.P., Montagna, M.: ‘Security-constrained economic dispatch using dual quadratic programming’, Electr. Power Syst. Res., 2000, 56, (1), pp. 7180 (doi: 10.1016/S0378-7796(00)00097-3).
    21. 21)
      • 22. Dent, C.J., Ochoa, L.F., Harrison, G.P.: ‘Network distributed generation capacity analysis using OPF with voltage step constraints’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 296304 (doi: 10.1109/TPWRS.2009.2030424).
    22. 22)
      • 20. Sousa, A.A., Torres, G.L., Cañizares, C.A.: ‘Robust optimal power flow solution using trust region and interior-point methods’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 487499 (doi: 10.1109/TPWRS.2010.2068568).
    23. 23)
      • 14. Lavaei, J., Low, S.H.: ‘Zero duality gap in optimal power flow problem’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 92107 (doi: 10.1109/TPWRS.2011.2160974).
    24. 24)
      • 11. Capitanescu, F., Wehenkel, L.: ‘Redispatching active and reactive powers using a limited number of control actions’, IEEE Trans. Power Syst., 2011, 26, (3), 12211230 (doi: 10.1109/TPWRS.2010.2102371).
    25. 25)
      • 23. Ahmadi, A.R., Green, T.C.: ‘Optimal power flow for autonomous regional active network management system’. IEEE Power and Energy Society General Meeting, 2009, pp. 17.
    26. 26)
      • 1. Chung, T.S., Shaoyun, G.: ‘A recursive LP-based approach for optimal capacitor allocation with cost-benefit consideration’, Electr. Power Syst. Res., 1997, 39, (2), pp. 129136 (doi: 10.1016/S0378-7796(96)01103-0).
    27. 27)
      • 7. Pudjianto, D., Ahmed, S., Strbac, G.: ‘Allocation of VAR support using LP and NLP based optimal power flows’, IEE Proc. Gener. Transm. Distrib., 2002, 149, (4), pp. 377383 (doi: 10.1049/ip-gtd:20020200).
    28. 28)
      • 18. Nejdawi, I.M., Clements, K.A., Davis, P.W.: ‘An efficient interior point method for sequential quadratic programming based optimal power flow’, IEEE Trans. Power Syst., 2000, 15, (4), pp. 11791183 (doi: 10.1109/59.898087).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0389
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0389
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading