© The Institution of Engineering and Technology
This paper presents an investigative study on unified power quality conditioner (UPQC) allocation for reactive power compensation of radial distribution networks. An UPQC consists of a series and a shunt inverter. The UPQC model based on phase angle control (UPQCPAC) is used. In UPQCPAC, the series inverter injects a voltage with controllable phase angle in such a way that the voltage magnitude at load end remains unchanged. Owing to the phase angle shift, the series inverter participates in load reactive power compensation along with the shunt inverter during healthy operating condition. The UPQCPAC model is suitably modified so as to provide the reactive power compensation of a distribution network. The impact of the UPQCPAC allocation is studied by placing it at each bus of a network, except the substation bus, one at a time. A load flow algorithm including the UPQCPAC model is devised and used in the determination of its optimal location in a network. The simulation study shows that the optimal allocation of UPQCPAC results in significant amount of power loss reduction, under voltage mitigation, and enhancement of voltage stability margin. Better power loss and bus voltage are obtained with UPQCPAC compared with some existing reactive power compensation approaches.
References


1)

D. Das
.
Reactive power compensation for radial distribution networks using genetic algorithm.
Int. J. Electr. Power Energy Syst.
,
7 ,
573 
581

2)

M. Chis ,
M.M.A. Salama ,
S. Jayaaam
.
Capacitor placement in distribution systems using heuristic search strategies.
IEE Proc., Gener. Transm. Distrib
,
3 ,
225 
230

3)

R.H. Liang ,
Y.Sh. Wang
.
Fuzzybased reactive power and voltage control in a distribution system.
IEEE Trans. Power Deliv.
,
610 
618

4)

4. Deshmukh, S., Natarajan, B., Pahwa, A.: ‘Voltage/VAR control in distribution networks via reactive power injection through distributed generators’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 1226–1234 (doi: 10.1109/TSG.2012.2196528).

5)

5. Dadkhah, M., Venkatesh, B.: ‘Cumulant based stochastic reactive power planning method for distribution systems with wind generators’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 2351–2359 (doi: 10.1109/TPWRS.2012.2210569).

6)

6. Jazebi, S., Hosseinian, S.H., Vahidi, B.: ‘DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm’, Energy Convers. Manage., 2011, 52, pp. 2777–2783 (doi: 10.1016/j.enconman.2011.01.006).

7)

7. Khadkikar, V.: ‘Enhancing electric power quality using UPQC: a comprehensive overview’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 2284–2297 (doi: 10.1109/TPEL.2011.2172001).

8)

H. Fujita ,
H. Akagi
.
The unified power quality conditioner: the integration of series and shuntactive filters.
IEEE Trans. Power Electron.
,
2 ,
315 
322

9)

M. Basu ,
S.P. Das ,
G.K. Dubey
.
Comparative evaluation of two models of UPQC for suitable interface to enhance power quality.
Electr. Power Syst. Res.
,
821 
830

10)

10. Khadkikar, V., Chandra, A.: ‘UPQCS: a novel concept of simultaneous voltage sag/swell and load reactive power compensations utilizing series inverter of UPQC’, IEEE Trans. Power Electron., 2011, 26, (9), pp. 2414–2425 (doi: 10.1109/TPEL.2011.2106222).

11)

11. Kisck, D.O., Navrapescu, V., Kisck, M.: ‘Singlephase unified power quality conditioner with optimum voltage angle injection for minimum VA requirement’. IEEE Proc.Power Electronics Specialists Conf., Bucharest, 2007, pp. 574–579.

12)

12. Khadkikar, V., Chandra, A.: ‘A novel structure for threephase fourwire distribution system utilizing unified power quality conditioner (UPQC)’, IEEE Trans. Ind. Appl., 2009, 45, pp. 1897–1902 (doi: 10.1109/TIA.2009.2027147).

13)

A.K. Jindal ,
A. Ghosh ,
A. Joshi
.
Interline unified power quality conditioner.
IEEE Trans. Power Deliv.
,
1 ,
364 
372

14)

14. Brenna, M., Faranda, R., Tironi, E.: ‘A new proposal for power quality and custom power improvement: OPEN UPQC’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 2107–2116 (doi: 10.1109/TPWRD.2009.2028791).

15)

V. Khadkikar ,
A. Chandra
.
A new control philosophy for a unified power quality conditioner (UPQC) to coordinate loadreactive power demand between shunt and series inverters.
IEEE Trans. Power Deliv.
,
4 ,
2522 
2534

16)

A. Ghosh ,
G. Ledwich
.
A unified power quality conditioner (UPQC) for simultaneous voltage and current compensation.
Electr. Power Syst. Res.
,
1 ,
55 
63

17)

17. Karanki, S.B., Mishra, M.K., Kumar, B.K.: ‘Particle swarm optimizationbased feedback controller for unified powerquality conditioner’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 2814–2824 (doi: 10.1109/TPWRD.2010.2047873).

18)

18. Heydari, H., Moghadasi, A.H.: ‘Optimization scheme in combinatorial UPQC and SFCL using normalized simulated annealing’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 1489–1498 (doi: 10.1109/TPWRD.2011.2111390).

19)

B. Han ,
B. Bae ,
H. Kim ,
S. Baek
.
Combined operation of unified powerquality conditioner with distributed generation.
IEEE Trans. Power Deliv.
,
1 ,
330 
338

20)

20. Jayanti, N.G., Basu, M., Conlon, M.F., Gaughan, K.: ‘Rating requirements of the unified power quality conditioner to integrate the fixed speed induction generatortype wind generation to the grid’, IET Renew. Power Gener., 2009, 3, (2), pp. 133–143 (doi: 10.1049/ietrpg:20080009).

21)

21. Hosseini, M., Shayanfar, H.A., FotuhiFiruzabad, M.: ‘Modeling of unified power quality conditioner (UPQC) in distribution systems load flow’, Energy Convers. Manage., 2009, 50, pp. 1578–1585 (doi: 10.1016/j.enconman.2009.02.006).

22)

22. Kennedy, J., Eberhart, R.C.: ‘Particle swarm optimization’. Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, 1995, pp. 1942–1948.

23)

Y. del Valle ,
G.K. Venayagamoorthy ,
S. Mohagheghi ,
J.C. Hernandez ,
R.G. Harley
.
Particle swarm optimization: basic concepts, variants and applications in power systems.
IEEE Trans. Evol. Comput.
,
2 ,
171 
195

24)

24. Khadkikar, V., Chandra, A., Barry, A.O., Nguyen, T.D.: ‘Analysis of power flow in UPQC during voltage sag and swell conditions for selection of device ratings’. IEEE Proc.Canadian Conf. Electrical and Computer Engineering, Ottawa, 2006, pp. 867–872.

25)

S. Ghosh ,
D. Das
.
Method of load flow solution of radial distribution networks.
IEE Proc., Gener., Transm. Distrib.
,
6 ,
641 
648

26)

M.E. Baran ,
F.F. Wu
.
Network reconfiguration in distribution systems for loss reduction and load balancing.
IEEE Trans. Power Del.
,
1401 
1407

27)

27. Savier, J.S., Das, D.: ‘Impact of network reconfiguration on loss allocation of radial distribution systems’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 2473–2480 (doi: 10.1109/TPWRD.2007.905370).

28)

13. Al Abri, R.S., ElSaadany, E.F., Atwa, Y.M.: ‘Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 326–334 (doi: 10.1109/TPWRS.2012.2200049).

29)

29. Ramalinga Raju, M., Ramachandra Murthy, K.V.S., Ravindra, K.: ‘Direct search algorithm for capacitive compensation in radial distribution systems’, Int. J. Electr. Power Energy Syst., 2012, 42, pp. 24–30 (doi: 10.1016/j.ijepes.2012.03.006).

30)

D. Thukaram ,
H. Khincha ,
H. Vijaynarasimha
.
Artificial neural network and support vector machine approach for locating faults in radial distribution systems.
IEEE Trans. Power Deliv.
,
2 ,
710 
721
http://iet.metastore.ingenta.com/content/journals/10.1049/ietgtd.2013.0382
Related content
content/journals/10.1049/ietgtd.2013.0382
pub_keyword,iet_inspecKeyword,pub_concept
6
6