access icon free Reliability-based phasor measurement unit placement in power systems considering transmission line outages and channel limits

Since phasor measurement unit (PMU) was invented, there has been growing interest in developing methodologies for finding the minimum number of PMUs for complete system observability. The methods for the PMU placement must consider the fact that the network topology may change when the power system is affected by a contingency event. Therefore the PMU placement problem can be stated as finding the minimum number of PMUs for complete system observability considering the failure probability of transmission lines. In this study, the authors propose a new reliability- based model for the contingency constrained PMUs placement. Initially, a methodology, that considers the probability of failure of the power system components, is proposed. Next, an algorithm is presented for selecting the minimal number of PMUs and their locations to monitor the system under normal operation and the most credible contingencies. A probabilistic index is introduced to select a desired level of reliability for the wide-area monitoring system. Finally, the availability of PMU measuring channels is incorporated in the model, so more realistic and useful results can be obtained. The problem is formulated and solved as a binary integer linear programming model and tested on the IEEE 9-bus, IEEE 57-bus and RTS96 test systems.

Inspec keywords: linear programming; integer programming; IEEE standards; power transmission lines; probability; power transmission reliability; power system measurement

Other keywords: RTS96 test system; reliability-based phasor measurement unit placement; transmission line outage; failure probability; IEEE 57-bus test system; network topology; binary integer linear programming model; complete system observability; wide-area monitoring system; power system measurement; contingency-constrained PMU placement; channel limit; IEEE 9-bus test system

Subjects: Reliability; Optimisation techniques; Other topics in statistics; Power transmission, distribution and supply; Power system measurement and metering

References

    1. 1)
      • 25. Najafabadi, A.M., Alouani, A.T.: ‘Optimal PMU placement algorithm with minimum measurement channels’. Proc. Southeastcon, March 2011, pp. 153157.
    2. 2)
      • 26. Zhao, Z., Makram, E.B.: ‘Optimal PMU placement considering number of analog channels’. Proc. North American Power Symposium (NAPS), August 2011, pp. 15.
    3. 3)
      • 26. Zhao, Z., Makram, E.B.: ‘Optimal PMU placement considering number of analog channels’. Proc. North American Power Symposium (NAPS), August 2011, pp. 15.
    4. 4)
      • 29. Aminifar, F., Bagheri-Shouraki, S., Fotuhi-Firuzabad, M., Shahidehpour, M.: ‘Reliability modeling of PMUs using fuzzy sets’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 23842391 (doi: 10.1109/TPWRD.2010.2051821).
    5. 5)
      • 34. Kamwa, I., Pradhan, A.K., Joos, G.: ‘Automatic segmentation of large power systems into fuzzy coherent areas for dynamic vulnerability assessment’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 19741985 (doi: 10.1109/TPWRS.2007.907383).
    6. 6)
      • 22. Aminifar, F., Fotuhi-Firuzabad, M., Shahidehpour, M., Khodaei, A.: ‘Observability enhancement by optimal PMU placement considering random power system outages’, Energy Syst., 2011, 2, (1), pp. 4565 (doi: 10.1007/s12667-011-0025-x).
    7. 7)
      • 6. Hajian, M., Ranjbar, A.M., Amraee, T., Shirani, A.R.: ‘Optimal placement of phasor measurement units: particle swarm optimization approach’. Proc. Int. Conf. Intelligent Systems Application Power Systems, November 2007, pp. 16.
    8. 8)
      • 10. Xu, B., Abur, A.: ‘Observability analysis and measurement placement for system with PMUs’. Proc. IEEE Power Systems Conf. Exposition, October 2004, vol 2, pp. 943946.
    9. 9)
      • 8. Al-Mohammed, A.H., Abido, M.A., Mansour, M.M.: ‘Optimal PMU placement for power system observability using differential evolution’. Proc. 11th Int. Conf. Intelligent Systems Design and Applications (ISDA), November 2011, pp. 277282.
    10. 10)
      • 33. The TOMLAB Optimization Environment, web page: http://tomopt.com/.
    11. 11)
      • 7. Xiaomeng, B., Jiaju, Q.: ‘Adaptive clonal algorithm and its application for optimal PMU placement’. Proc. Int. Conf. Communications, Circuits and Systems, June 2006, vol. 3, pp. 21022106.
    12. 12)
      • 20. Sodhi, R., Srivastava, S.C., Singh, S.N.: ‘Multi-criteria decision-making approach for multi-stage optimal placement of phasor measurement units’, IET Gener. Transm. Distrib., 2011, 5, (2), pp. 181190 (doi: 10.1049/iet-gtd.2009.0709).
    13. 13)
      • 17. Sodhi, R., Srivastava, S.C., Singh, S.N.: ‘Optimal PMU placement to ensure system observability under contingencies’. Proc. Power and Energy Society General Meeting, July 2009, pp. 16.
    14. 14)
      • 24. Korkali, M., Abur, A.: ‘Placement of PMUs with channel limits’. Proc. Power & Energy Society General Meeting July 2009, July 2009, pp. 14.
    15. 15)
      • 12. Gou, B.: ‘Generalized integer linear programming formulation for optimal PMU placement’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 10991104 (doi: 10.1109/TPWRS.2008.926475).
    16. 16)
      • 15. Chakrabarti, S., Kyriakides, E., Eliades, D.G.: ‘Placement of synchronized measurements for power system observability’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 1219 (doi: 10.1109/TPWRD.2008.2008430).
    17. 17)
      • 21. Kamwa, I., Grondin, R.: ‘PMU configuration for system dynamic performance measurement in large, multiarea power systems’, IEEE Trans. Power Syst., 2002, 17, (2), pp. 385394 (doi: 10.1109/TPWRS.2002.1007908).
    18. 18)
      • 19. Aminifar, F., Khodaei, A., Fotuhi-Firuzabad, M., Shahidehpour, M.: ‘Contingency constrained PMU placement in power networks’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 516523 (doi: 10.1109/TPWRS.2009.2036470).
    19. 19)
      • 14. Kavasseri, R., Srinivasan, S.K.: ‘Joint placement of phasor and conventional power flow measurements for fault observability of power systems’, IET Gener. Transm. Distrib., 2011, 5, (10), pp. 10191024 (doi: 10.1049/iet-gtd.2010.0791).
    20. 20)
      • 3. Milosevic, B., Begovic, M.: ‘Non-dominated sorting genetic algorithm for optimal phasor measurement placement’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 6975 (doi: 10.1109/TPWRS.2002.807064).
    21. 21)
      • 9. Aminifar, F., Lucas, C., Khodaei, A., Fotuhi-Firuzabad, M.: ‘Optimal placement of phasor measurement units using immunity genetic algorithm’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10141020 (doi: 10.1109/TPWRD.2009.2014030).
    22. 22)
      • 11. Gou, B.: ‘Optimal placement of PMUs by integer linear programming’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 15251526 (doi: 10.1109/TPWRS.2008.926723).
    23. 23)
      • 32. Grigg, C., Wong, P., Albrecht, P., et al: ‘The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 10101020 (doi: 10.1109/59.780914).
    24. 24)
      • 28. Yang, W., Wenyuan, L., Jiping, L.: ‘Reliability analysis of phasor measurement unit using hierarchical Markov modeling’, Electr. Power Compon. Syst., 2009, 37, (5), pp. 517532 (doi: 10.1080/15325000802599361).
    25. 25)
      • 31. Peng, Z., Chan, K.W.: ‘Reliability evaluation of phasor measurement unit using Monte Carlo dynamic fault tree method’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12351243 (doi: 10.1109/TSG.2011.2180937).
    26. 26)
      • 25. Najafabadi, A.M., Alouani, A.T.: ‘Optimal PMU placement algorithm with minimum measurement channels’. Proc. Southeastcon, March 2011, pp. 153157.
    27. 27)
      • 16. Caro, E., Singh, R., Pal, B.C., Conejo, A.J., Jabr, R.A.: ‘Participation factor approach for phasor measurement unit placement in power system state estimation’, IET Gener. Transm. Distrib., 2012, 6, (9), pp. 922929 (doi: 10.1049/iet-gtd.2011.0705).
    28. 28)
      • 18. Chawasak, R., Suttichai, P., Sermsak, U., Watson, N.R.: ‘An optimal PMU placement method against measurement loss and branch outage’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 101107 (doi: 10.1109/TPWRD.2006.881425).
    29. 29)
      • 13. Dua, D., Dambhare, S., Gajbhiye, R.K., Soman, S.A.: ‘Optimal multistage scheduling of PMU placement: an ILP approach’, IEEE Trans. Power Deliv., 2006, 23, (4), pp. 18121820 (doi: 10.1109/TPWRD.2008.919046).
    30. 30)
      • 1. Baldwin, T.L., Mili, L., Boisen, M.B., Adapa, R.: ‘Power system observability with minimal phasor measurement placement’, IEEE Trans. Power Syst., 1993, 8, (2), pp. 707715 (doi: 10.1109/59.260810).
    31. 31)
      • 30. Yang, W., Wenyuan, L., Peng, Z., Bing, W., Jiping, L.: ‘Reliability analysis of phasor measurement unit considering data uncertainty’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 15031510 (doi: 10.1109/TPWRS.2011.2180545).
    32. 32)
      • 2. Marın, F.J., Garcıa-Lagos, F., Joya, G., Sandoval, F.: ‘Genetic algorithms for optimal placement of phasor measurement units in electric networks’, Electron. Lett., 2003, 39, (19), pp. 14031405 (doi: 10.1049/el:20030919).
    33. 33)
      • 4. Peng, J., Sun, Y., Wang, H.F.: ‘Optimal PMU placement for full network observability using Tabu search algorithm’, Electr. Power Syst. Res., 2006, 28, (4), pp. 223231 (doi: 10.1016/j.ijepes.2005.05.005).
    34. 34)
      • 23. Aminifar, F., Fotuhi-Firuzabad, M., Shahidehpour, M., Khodaei, A.: ‘Probabilistic multistage PMU placement in electric power systems’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 841849 (doi: 10.1109/TPWRD.2010.2090907).
    35. 35)
      • 27. Miljanic, Z., Djurovic, I., Vujosevic, I.: ‘Optimal placement of PMUs with limited number of channels’, Electr. Power Syst. Res., 2012, 90, pp. 9398 (doi: 10.1016/j.epsr.2012.04.010).
    36. 36)
      • 5. Cho, K.S., Shin, J.R., Hyun, S.H.: ‘Optimal placement of phasor measurement units with GPS receiver’. Proc. IEEE Power Engineering Society Winter Meeting, January/February 2001, vol. 1, pp. 258262.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0251
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0251
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading