access icon free Improved first zone reach setting of artificial neural network-based directional relay for protection of double circuit transmission lines

This study proposes an artificial neural network-based protection scheme for double circuit transmission line with improved first zone reach setting up to 99% of line length. The proposed scheme involves three stages. The first stage makes the discrimination among normal condition and faults. The second stage identifies the zone/section of the fault from the relay location. If a forward fault is detected in its first zone then the third stage is activated, which classifies the fault type and identifies the faulty phase. The three-phase currents and voltages measured at only one end of the double circuit line are used to calculate discreet Fourier coefficients. Thus, this technique does not require any communication link. The algorithm is presented in detail and extensively tested using the simulink model of a 400 kV, 300 km distributed parameter line simulated in MATLAB® 2009a in the time domain. The simulation results show that all types of shunt faults (forward as well as reverse), its zone/section and faulty phase can be correctly identified within a half cycle time. This method is adaptive to the variation of fault type, fault inception angle, fault location, fault resistance, single circuit operation and CT saturation. The main advantage of the proposed scheme is that it offers primary protection to total line length using single end data only and back up protection for the adjacent forward and reverse line section also.

Inspec keywords: power overhead lines; power transmission faults; power engineering computing; relay protection; fault location; Fourier analysis

Other keywords: shunt faults; discreet Fourier coefflcients; CT saturation; forward fault; artificial neural network-based directional relay; fault inception angle; single circuit operation; distributed parameter line; back up protection; fault location; double circuit transmission line; fault resistance; relay location; time domain; three-phase voltages; adjacent forward line section; three-phase currents; MATLAB; double circuit transmission lines protection; artiflcial neural network-based protection scheme; communication link; overhead transmission line; reverse line section

Subjects: Mathematical analysis; Inspection and quality control; Mathematical analysis; Power engineering computing; Overhead power lines; Power system protection

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 22. Perera, N., Rajapakse, A.D.: ‘Design and hardware implementation of a modular transient directional protection scheme using current signals’, IET Gener. Transm. Distrib., 2012, 6, (6), pp. 554562 (doi: 10.1049/iet-gtd.2011.0666).
    25. 25)
      • 8. Dash, P.K., Pradhan, A.K., Panda, G. : ‘A novel fuzzy neural network based distance relaying scheme’, IEEE Trans. Power Deliv., 2000, 15, (3), pp. 902907 (doi: 10.1109/61.871350).
    26. 26)
      • 26. Upendar, J., Gupta, C.P., Singh, G.K., Ramakrishna, G.: ‘PSO and ANN-based fault classification for protective relaying’, IET, Gener. Transm. Distrib., 2010, 4, (10), pp. 11971212 (doi: 10.1049/iet-gtd.2009.0488).
    27. 27)
      • 21. Ngaopitakkul, A., Bunjongjit, S.: ‘An application of a discrete wavelet transform and a back-propagation neural network algorithm for fault diagnosis on single-circuit transmission line’, Int. J. Syst. Sci., 2013, 4, (9), pp. 17451761 (doi: 10.1080/00207721.2012.670290).
    28. 28)
      • 6. Bo, Z.Q., Aggarwal, R.K., Johns, A.T., Li, H.Y., Song, Y.H.: ‘A new approach to phase selection using fault generated high frequency noise and neural networks’, IEEE Trans. Power Deliv., 1997, 12, (1), pp. 106115 (doi: 10.1109/61.568230).
    29. 29)
      • 7. Agarwal, R.K., Xuan, Q.Y., Dunn, R.W., Johns, A.T., Bennett, A.: ‘A novel fault classification technique of double circuit lines based on a combined unsupervised/supervised neural network’, IEEE Trans. Power Deliv., 1999, 14, (4), pp. 12501256 (doi: 10.1109/61.796214).
    30. 30)
      • 23. Pérez, F.E., Aguilar, R., Orduña, E., Jäger, J., Guidi, G.: ‘High-speed non-unit transmission line protection using single-phase measurements and an adaptive wavelet: zone detection and fault classification’, IET, Gener. Transm. Distrib., 2012, 6, (7), pp. 593604 (doi: 10.1049/iet-gtd.2011.0592).
    31. 31)
      • 24. Stojanovic, Z.N., Djuric, M.B.: ‘An algorithm for directional earth-fault relay with no voltage inputs’, Electr. Power Syst. Res., 2013, 96, pp. 144149 (doi: 10.1016/j.epsr.2012.11.004).
    32. 32)
      • 20. Sami, E.: ‘Support vector machines for classification and locating of fault in transmission line’, Appl. Soft Comput., 2012, 12, (6), pp. 16501658 (doi: 10.1016/j.asoc.2012.02.011).
    33. 33)
      • 15. Jena, P., Pradhan, A.K.: ‘A positive-sequence directional relaying algorithm for series-compensated line’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 22882298 (doi: 10.1109/TPWRD.2010.2047122).
    34. 34)
      • 19. Upendar, J., Gupta, C.P., Singh, G.K.: ‘Comprehensive adaptive distance relaying scheme for parallel transmission lines’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 10391052 (doi: 10.1109/TPWRD.2010.2090365).
    35. 35)
      • 18. Ricardo Caneloi dos, S., Eduardo Cesar, S.: ‘Transmission lines distance protection using artificial neural networks’, Int. J. Electr. Power Energy Syst., 2011, 33, (3), pp. 721730 (doi: 10.1016/j.ijepes.2010.12.029).
    36. 36)
      • 13. Jiang, J.A., Chen, C.S., Liu, C.W.: ‘A new protection scheme for fault detection, direction discrimination, classification, and location in transmission lines’, IEEE Trans. Power Deliv., 2003, 18, (1), pp. 3442 (doi: 10.1109/TPWRD.2002.803726).
    37. 37)
      • 11. Pradhan, A.K., Routray, A., Pati, S., Pradhan, D.K.: ‘Wavelet fuzzy combined approach for fault classification of a series-compensated transmission line’, IEEE Trans. Power Deliv., 2004, 19, (4), pp. 16121618 (doi: 10.1109/TPWRD.2003.822535).
    38. 38)
      • 28. Samantaray, S.R.: ‘A data-mining model for protection of FACTS-based transmission line’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 612618 (doi: 10.1109/TPWRD.2013.2242205).
    39. 39)
      • 1. Phadke, A.G., Thorp, J.S.: ‘Computer relaying for power systems’ (Wiley, New York, 1988).
    40. 40)
      • 27. Jafarian, P., Sanaye-Pasand, M.: ‘High-frequency transients-based protection of multiterminal transmission lines using the SVM technique’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 188196. (doi: 10.1109/TPWRD.2012.2215925).
    41. 41)
      • 12. Jiang, J.A., Lin, Y.H., Yang, J.Z., Too, T.M., Liu, C.W.: ‘An adaptive PMU based fault detection/location technique for transmission lines. II. PMU implementation and performance evaluation’, IEEE Trans Power Deliv., 2000, 15, (4), pp. 11361146 (doi: 10.1109/61.891494).
    42. 42)
      • 14. Jiandong, D., Qin, Z., Lin, A.: ‘Directional relay based on travelling-wave comparison using intrinsic mode function for EHV transmission lines’. 5th Int. Conf. Critical Infrastructure (CRIS), 20–22 September 2010, pp. 15.
    43. 43)
      • 4. Saleem, S.M.A., Sharaf, A.M.: ‘A novel travelling wave based relaying scheme using wavelet transforms for arcing faults detection on series compensated transmission lines’. Canadian Conf. Electrical and Computer Engineering (CCECE) 2007, Vancouver, BC, 22-26 April 2007, pp. 575578.
    44. 44)
      • 10. Youssef, O.A.S.: ‘New algorithm to phase selection based on wavelet transforms’, IEEE Trans. Power Deliv., 2002, 17, pp. 908914 (doi: 10.1109/TPWRD.2002.803729).
    45. 45)
      • 3. Mansour, M.M., Swift, G.W.: ‘A multi-microprocessor based travelling wave relay—theory and realization’, IEEE Trans. Power Deliv., 1986, 1, (1), pp. 272279 (doi: 10.1109/TPWRD.1986.4307919).
    46. 46)
      • 2. Aggarwal, R.K., Johns, A.T.: ‘A differential line protection scheme for power systems based on composite voltage and current measurements’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 15951601 (doi: 10.1109/61.32648).
    47. 47)
      • 5. Jongepier, A.G., van der Sluis, L.: ‘Adaptive distance protection of a double-circuit line’, IEEE Trans. Power Deliv., 1994, 9, (3), pp. 12891297 (doi: 10.1109/61.311155).
    48. 48)
      • 9. Mazon, A.J., Zamora, I.J., Minambres, F., Zorrozua, M.A., Barandiaran, J.J., Sagastabeitia, K.: ‘A new approach to fault location in two-terminal transmission lines using artificial neural networks’, Electr. Power Syst. Res. J., 2000, 56, (3), pp. 261266 (doi: 10.1016/S0378-7796(00)00122-X).
    49. 49)
      • 17. Sidhu, T.S., Singh, H., Sachdev, M.S.: ‘An artificial neural network for directional comparison relaying of transmission lines’. Proc. Sixth Int. Conf. Developments in Power System Protection, 25–27 March 1997, 434, pp. 282285.
    50. 50)
      • 25. Jayabharata Reddy, M., Mohanta, D.K.: ‘A Wavelet-neuro-fuzzy combined approach for digital relaying of transmission line faults’, Electr. Power Compon. Syst., 2007, 35, (12), pp. 13851407. (doi: 10.1080/15325000701426161).
    51. 51)
      • 16. Sidhu, T.S., Singh, H., Sachdev, M.S.: ‘An artificial neural network based directional discriminator for protecting transmission lines’. Proc. Canadian Conf. Electrical and Computer Engineering, 1993, pp. 205208.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0239
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0239
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading