access icon free Power conversion interface for small-capacity wind power generation system

Power conversion interface for small-capacity wind power generation system based on permanent-magnet synchronous generator (PMSG) is proposed in this paper. The proposed power conversion interface will convert the wind power generated from the three-phase PMSG to a high quality power to inject into the single-phase utility. This power conversion interface comprises of a power converter and a zero-sequence transformer set. The power converter is controlled to generate a set of positive-sequence currents to absorb a real power from the three-phase PMSG and a set of zero-sequence currents to pass through the zero-sequence transformer set to the single-phase utility. A feed-forward control is used to control the proposed power conversion interface so as to simplify the control circuit. A simplified maximum power point tracking method is also proposed and incorporated in the control circuit of the power conversion interface to extract the maximum power of the PMSG-based wind power generation system. Hence, the proposed power conversion interface has the advantages of simplifying both the power circuit and the control circuit. A prototype is developed to demonstrate the performance of the proposed power conversion interface. The experimental results show that the proposed power conversion interface can achieve the expected performance.

Inspec keywords: maximum power point trackers; synchronous generators; power generation control; power transformers; wind power plants; feedforward; permanent magnet generators

Other keywords: three-phase PMSG; control circuit; power quality; zero-sequence currents; permanent-magnet synchronous generator; power circuit; power conversion interface; feed-forward control; power converter; zero-sequence transformer set; simplified maximum power point tracking method; single-phase utility; small-capacity wind power generation system; positive-sequence currents

Subjects: Wind power plants; Synchronous machines; Power convertors and power supplies to apparatus; Control of electric power systems; Transformers and reactors

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 22. Sarma, M.S., Pathak, M.K.: ‘Electric machinesCengage, 2010.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 12. Mei, Y., Huang, L.: ‘Improved switching function modulation strategy for three-phase to single-phase matrix converter’. IEEE IPEMC, 2009, pp. 17341737.
    19. 19)
      • 18. Li, H., Shi, K.L., McLaren, P.G.: ‘Neural-network-based sensor less maximum wind energy capture with compensated power coefficient’, IEEE Trans. Ind. Appl., 2005, 41, (6), pp. 15481556 (doi: 10.1109/TIA.2005.858282).
    20. 20)
      • 5. Wu, J.C.: ‘Novel circuit configuration for compensating for the reactive power of induction generator’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 156162 (doi: 10.1109/TEC.2006.888030).
    21. 21)
      • 8. Haque, M.E., Negnevitsky, M., Muttaqi, K.M.: ‘A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator’, IEEE Trans. Ind. Appl., 2010, 46, (1), pp. 331339 (doi: 10.1109/TIA.2009.2036550).
    22. 22)
      • 4. Wu, J.C.: ‘A new AC/DC power conversion interface for self-excited induction generator’, IET Renew. Power Gener., 2009, 3, (2), pp. 144151 (doi: 10.1049/iet-rpg:20070100).
    23. 23)
      • 23. Mohan, N., Undeland, T.M., Robbins, W.P.: ‘Power electronics converters, applications and design’ (Media EnhancedJohn Wiley & Sons, 2003, 3rd edn.).
    24. 24)
      • 13. Kolar, J.W., Schafmeister, F., Round, S.D., Ertl, H.: ‘Novel three-phase AC–AC sparse matrix converters’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 16491661 (doi: 10.1109/TPEL.2007.904178).
    25. 25)
      • 11. Wu, J.C., Wang, Y.H.: ‘Three-phase to single-phase power conversion system’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 453461 (doi: 10.1109/TPEL.2010.2068314).
    26. 26)
      • 1. Li, H., Chen, Z.: ‘Overview of different wind generator systems and their comparisons’, IET Renew. Power Gener., 2008, 2, (2), pp. 123138 (doi: 10.1049/iet-rpg:20070044).
    27. 27)
      • 15. Raju, B., Chatterjee, K., Fernandes, B.G.: ‘A simple maximum power point tracker for grid connected variable speed wind energy conversion system with reduced switch count power converters’, IEEE PESC, 2003, 2, pp. 748753.
    28. 28)
      • 22. Sarma, M.S., Pathak, M.K.: ‘Electric machinesCengage, 2010.
    29. 29)
      • 10. Muljadi, E., Hess, H.L., Thomas, K.: ‘Zero sequence method for energy recovery from a variable-speed wind turbine generator’, IEEE Trans. Energy Convers., 2001, 16, (1), pp. 99103 (doi: 10.1109/60.911411).
    30. 30)
      • 20. Wang, Q., Chang, L.: ‘An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 12421249 (doi: 10.1109/TPEL.2004.833459).
    31. 31)
      • 19. Koutroulis, E., Kalaitzakis, K.: ‘Design of a maximum power tracking system for wind-energy-conversion applications’, IEEE Trans. Ind. Electron., 2006, 53, (2), pp. 486494 (doi: 10.1109/TIE.2006.870658).
    32. 32)
      • 14. Barakati, S.M., Kazerani, M., Aplevich, J.D.: ‘Maximum power tracking control for a wind turbine system including a matrix converter’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 705713 (doi: 10.1109/TEC.2008.2005316).
    33. 33)
      • 9. Maamoun, A., Bayoumi, E.H.E., Khalil, M.O., Mhfouz, A.: ‘Converter-inverter system with dependent PWM control for three-phase induction motor’. Proc. of Int. Symp. on Advanced Control of Industrial Processes, 2002, pp. 9196.
    34. 34)
      • 2. Zeineldin, H.H., El-Fouly, T.H.M., El-Saadany, E.F., Salama, M.M.A.: ‘Impact of wind farm integration on electricity market prices’, IET Renew. Power Gener., 2009, 3, (1), pp. 8495 (doi: 10.1049/iet-rpg:20080026).
    35. 35)
      • 3. Chen, Z., Guerrero, J.M., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875 (doi: 10.1109/TPEL.2009.2017082).
    36. 36)
      • 21. Jou, H.L., Wu, K.D., Wu, J.C., Chiang, W.J.: ‘A three-phase four-wire power filter comprising a three-phase three-wire active power filter and a zig-zag transformer’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 252259 (doi: 10.1109/TPEL.2007.911779).
    37. 37)
      • 17. Duan, R.-Y., Lin, C.-Y., Wai, R.-J.: ‘Maximum-power-extraction algorithm of grid-connected PMSG wind generation system’. Conf. on IEEE Industrial Electronics, November 2006, pp. 42484253.
    38. 38)
      • 7. Bayoumi, E.H.E., Maamoun, A., Pyrhönen, O., Khalil, M.O., Mhfouz, A.: ‘Enhanced method for controlling PWM converter-inverter system’. Proc. of IASTED Int. Conf. of Power and Energy Systems, PES'02, 2002, pp. 425430.
    39. 39)
      • 16. Morimoto, S., Nakayama, H., Sanda, M., Takeda, Y.: ‘Sensorless output maximization control for variable-speed wind generation system using IPMSG’, IEEE Trans. Ind. Appl., 2005, 41, (1), pp. 6067 (doi: 10.1109/TIA.2004.841159).
    40. 40)
      • 6. Higuchi, Y., Yamamura, N., Ishida, M., Hori, T.: ‘A new variable-speed wind energy conversion system using permanent-magnet synchronous generator and Z source inverter’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 714724 (doi: 10.1109/TEC.2009.2016022).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0192
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0192
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading