access icon free Stochastic assessment of voltage dips caused by transformer energisation

Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameters are of stochastic nature, Monte Carlo simulation was conducted in this study to stochastically assess the voltage dips caused by transformer energisation in a 400 kV grid, using a network model developed and validated against field measurements. A dip frequency pattern was identified over 1000 stochastic runs and it was found to be sensitive to residual flux distribution but insensitive to closing offset time distribution. The probability of reaching the worst case dip magnitude (estimated under the commonly agreed worst energisation condition) was found to be lower than 0.5%; about 80% of the dips are likely to be with magnitudes lower than 0.6 pu of the worst case. Nevertheless, there are dips with magnitudes exceeding the worst case dip magnitude, indicating the inadequacy of deterministic assessment approach by using the commonly agreed worst energisation condition.

Inspec keywords: Monte Carlo methods; probability; power transformers; stochastic processes; circuit breakers

Other keywords: closing offset time distribution; voltage 400 kV; transformer core residual flux; Monte Carlo simulation; network conditions; energisation condition; deterministic assessment approach; power transformers; core saturation characteristic; stochastic nature; field measurements; transformer energisation; circuit breaker closing time; stochastic assessment; residual flux distribution; voltage dips; dip frequency pattern

Subjects: Transformers and reactors; Switchgear; Monte Carlo methods

References

    1. 1)
      • 11. Pors, A., Browne, N.: ‘Modelling the energisation of a generator step-up transformer from the high voltage network’. Australasian Universities Power Engineering Conf. (AUPEC), Sydney, Australia, December 2008, pp. 15.
    2. 2)
      • 4. Arana, I., Hernandez, A., Thumm, G., Holboell, J.: ‘Energization of wind turbine transformers with an auxiliary generator in a large offshore wind farm during islanded operation’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 27922800 (doi: 10.1109/TPWRD.2011.2163648).
    3. 3)
      • 15. Ma, T., Cadmore, A.: ‘System studies of voltage dips resulting from energisation of MV wind turbine transformers’. Int. Conf. and Exhibition on Electricity Distribution, Turin, Italy, June 2005, pp. 15.
    4. 4)
      • 18. Bowles, J.P.: ‘Overvoltages in HVDC transmission systems caused by transformer magnetizing inrush currents’, IEEE Power Appl. Syst., 1974, PAS-93, (2), pp. 487495 (doi: 10.1109/TPAS.1974.293995).
    5. 5)
      • 1. Blume, L.F., Camilli, G., Farnham, S.B., Peterson, H.A.: ‘Transformer magnetizing inrush currents and influence on system operation’, AIEE Trans., 1944, 63, (6), pp. 366375.
    6. 6)
      • 7. Pontt, J., Rodriguez, J., Martin, J.S., Aguilera, R.: ‘Mitigation of sympathetic interaction between power transformers fed by long overhead lines caused by inrush transient currents’. IEEE-IAS Annual Meeting, New Orleans, Louisiana, USA, September 2007, pp. 13601363.
    7. 7)
      • 5. Bollen, M.H.J., Gu, I.Y.H.: ‘Signal processing of power quality disturbances’ (IEEE Press, 2006).
    8. 8)
      • 2. Brunke, J.H., Frohlich, K.J.: ‘Elimination of transformer inrush currents by controlled switching-Part I: theoretical considerations’, IEEE Trans. Power Deliv., 2001, 16, (2), pp. 276280 (doi: 10.1109/61.915495).
    9. 9)
      • 14. Turner, R.A., Smith, K.S.: ‘Assessing P28 guidelines for renewable generation connections’. Int. Conf. on Power System Transients (IPST), Delft, The Netherlands, June 2011.
    10. 10)
      • 20. Bolhasani, M., Kamangar, S.S.H., Tavakoli, S.: ‘Determination of distribution function of inrush current in three phase transformer using Monte Carlo method’. Int. Universities Power Engineering Conf. (UPEC), London, UK, September 2012, pp. 17.
    11. 11)
      • 23. Greenwood, A.: ‘Electrical transients in power systems’ (Wiley Press, 1971, 2nd edn. 1991).
    12. 12)
      • 13. Smith, K.S.: ‘Transformer inrush studies for wind farm grid connections’. Int. Conf. on Power System Transients (IPST), Montreal, Canada, June 2005.
    13. 13)
      • 12. Rioual, M., Reveret, J.C.: ‘Energization of step-up transformers for wind-farms: modeling and its validation by tests performed on a 10 MW site’. IEEE PES General Meeting, Calgary, Alberta, Canada, July 2009, pp. 17.
    14. 14)
      • 24. Chiesa, N., Avendano, H.K., Mork, B.A., Ishchenko, D., Kunze, A.P.: ‘On the ringdown transient of transformers’. Int. Conf. on Power System Transients (IPST), Lyon, France, June 2007.
    15. 15)
      • 10. Seo, H.C., Kim, C.H.: ‘The analysis of power quality effects from the transformer inrush current: a case study of the Jeju power system, Korea’. IEEE PES General Meeting, Pittsburgh, USA, July 2008, pp. 16.
    16. 16)
      • 3. Chiesa, N., Mork, B.A., Hoidalen, H.K.: ‘Transformer model for inrush current calculations: simulations, measurements and sensitivity analysis’, IEEE Trans. Power Deliv., 2011, 25, (4), pp. 25992608 (doi: 10.1109/TPWRD.2010.2045518).
    17. 17)
      • 16. Arana, I., Holbøll, J., Sørensen, T., Nielsen, A.H., Holmstrøm, O., Sørensen, P.: ‘Voltage dip caused by the sequential energization of wind turbine transformers’. Proc. Conf. on European Wind Energy Association, Marseille, France, March 2009.
    18. 18)
      • 19. Martínez Duró, M., Denis, R.: ‘Parameter uncertainty assessment in the calculation of the overvoltages due to transformer energization in resonant networks’ (Cigré Session, Paris, France, 2012).
    19. 19)
      • 22. Martinez, J.A., Martin-Arnedo, J.: ‘Voltage sag stochastic prediction using an electromagnetic transients program’, IEEE Trans. Power Deliv., 2004, 19, (4), pp. 19751982 (doi: 10.1109/TPWRD.2004.829125).
    20. 20)
      • 8. Peng, J.S., Li, H.Y., Wang, Z.D., Ghassemi, F., Jarman, P.: ‘Influence of sympathetic inrush on voltage dips caused by transformer energization’, IET Gener. Transm. Distrib., in press, doi: 10.1049/iet-gtd.2012.0166.
    21. 21)
      • 9. Nagpal, M., Martinich, T.G., Moshref, A., Morison, K., Kundur, P.: ‘Assessing and limiting impact of transformer inrush current on power quality’, IEEE Trans. Power Deliv., 2006, 21, (2), pp. 890896 (doi: 10.1109/TPWRD.2005.858782).
    22. 22)
      • 6. Styvaktakis, E., Bollen, M.H.J.: ‘Signatures of voltage dips: transformer saturation and multistage dips’, IEEE Trans. Power Deliv., 2003, 18, (1), pp. 265270 (doi: 10.1109/TPWRD.2002.804016).
    23. 23)
      • 21. Prikler, L., Bánfai, G., Bán, G., Becker, P.: ‘Reducing the magnetizing inrush current by means of controlled energization and de-energization of large power transformers’, Electr. Power Syst. Res., 2006, 76, (8), pp. 642649 (doi: 10.1016/j.epsr.2005.12.022).
    24. 24)
      • 17. Pierrat, L., Tran-Quoc, T.: ‘Influence of random variables on transformer inrush current’. Int. Conf. on Power System Transients (IPST), Lisbon, Portugal, September 1995.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0091
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0091
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading