access icon free Contingency filtering technique for transient stability constrained optimal power flow

Transient stability constrained optimal power flow (TSCOPF) is an important and difficult problem. When multiple contingencies are considered, a reliable contingency filtering technique should be used to reduce the scale of TSCOPF problem. This study brings in the concepts of active contingency and critical contingency, and develops a novel contingency filtering strategy. Based on time-domain numerical simulations, the proposed contingency filtering strategy first screens all the considered contingencies and identifies active contingencies whose severe indices violate the pre-defined threshold of transient stability, then further finds out the critical contingencies in which some generators are most severely disturbed according to the severe indices trajectories. The severe indices can be such as maximal relative rotor angles, maximal transient generator voltage dips and so on. Taking only the critical contingencies into account, the scale of TSCOPF problem is reduced significantly. Interior point method is used to solve the reduced TSCOPF problem. Numerical results on several cases indicate that the proposed contingency filtering technique is reliable and efficient. Compared with the conventional TSCOPF approach, which involves all the contingencies, the proposed contingency filtering strategy possesses overwhelming advantages in CPU time and memory consumption, and is hopeful to solve TSCOPF problems with many contingencies.

Inspec keywords: load flow control; time-domain analysis; filtering theory; power system transient stability

Other keywords: time-domain numerical simulations; contingency filtering technique; relative rotor angles; interior point method; transient stability constrained optimal power flow; critical contingency; transient generator voltage dips; active contingency; TSCOPF

Subjects: Control of electric power systems; Filtering methods in signal processing; Other numerical methods; Other numerical methods; Power system control

References

    1. 1)
      • 1. Wu, Y.C., Debs, A.S., Marsten, R.E.: ‘A direct nonlinear predictor- corrector primal-dual interior point algorithm for optimal power flows’, IEEE Trans. Power Syst., 1994, 9, (2), pp. 876883 (doi: 10.1109/59.317660).
    2. 2)
      • 20. Kamwa, I., Samantaray, S.R., Joos, G.: ‘Development of rule-based classifiers for rapid stability assessment of wide-area post-disturbance records’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 258270 (doi: 10.1109/TPWRS.2008.2009430).
    3. 3)
      • 10. Chen, L., Tada, Y., Okamoto, H., Tanabe, R., Ono, A.: ‘Optimal operation solution of power system with transient stability constraints’, IEEE Trans. Circuits Syst. I, Fundam. Appl., 2001, 48, (3), pp. 327339 (doi: 10.1109/81.915388).
    4. 4)
      • 11. Sun, Y., Yang, X., Wang, H.: ‘Approach for optimal power flow with transient stability constraints’, IEE Proc. Gener. Transm. Distrib., 2004, 151, (1), pp. 818 (doi: 10.1049/ip-gtd:20040059).
    5. 5)
      • 19. Kamwa, I., Grondin, R., Loud, L.: ‘Time-varying contingency screening for dynamic security assessment using intelligent-systems techniques’, IEEE Trans. Power Syst., 2001, 16, (3), pp. 526536 (doi: 10.1109/59.932291).
    6. 6)
      • 6. Gan, D., Thomas, R.J., Zimmerman, R.D.: ‘Stability-constrained optimal power flow’, IEEE Trans. Power Syst., 2000, 15, (2), pp. 535540 (doi: 10.1109/59.867137).
    7. 7)
      • 5. Scala, M.L., Trovato, M., Antonelli, C.: ‘On-line dynamic preventive control: an algorithm for transient security dispatch’, IEEE Trans. Power Syst., 1998, 13, (2), pp. 601610 (doi: 10.1109/59.667388).
    8. 8)
      • 9. Allella, F., Lauria, D.: ‘Fast optimal dispatch with global transient stability constraint’, IEE Proc., Gener. Transm. Distrib., 2001, 148, (5), pp. 471476 (doi: 10.1049/ip-gtd:20010446).
    9. 9)
      • 7. Yuan, Y., Kubokawa, J., Sasaki, H.: ‘A solution of optimal power flow with multi-contingency transient stability constraints’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10941102 (doi: 10.1109/TPWRS.2003.814856).
    10. 10)
      • 26. Ruiz-Vega, D., Pavella, M.: ‘A comprehensive approach to transient stability control: part I – near optimal preventive control’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 14461453 (doi: 10.1109/TPWRS.2003.818708).
    11. 11)
      • 25. Gan, D., Qu, Z., Cai, H., Wang, X.: ‘Methodology and computer package for generation rescheduling’, IEE Proc. Gener. Transm. Distrib., 1997, 144, (3), pp. 301307 (doi: 10.1049/ip-gtd:19971136).
    12. 12)
      • 24. Cervantes, A.M., Wachter, A., Tutuncu, R.H., Biegler, L.T.: ‘A reduced space interior point strategy for optimisation of differential algebraic systems’, Comput. Chem. Eng., 2000, 24, (1), pp. 3951 (doi: 10.1016/S0098-1354(00)00302-1).
    13. 13)
      • 15. Mo, N., Zou, Z.Y., Chan, K.W., Pong, T.Y.G.: ‘Transient stability constrained optimal power flow using particle swarm optimisation’, IET Gener. Transm. Distrib., 2007, 1, (3), pp. 476483 (doi: 10.1049/iet-gtd:20060273).
    14. 14)
      • 27. Xue, Y., Li, W., Hill, D.J.: ‘Optimization of transient stability control part-I: for cases with identical unstable modes’, Int. J. Control Autom. Syst., 2005, 3, (2), pp. 334340.
    15. 15)
      • 13. Xia, D., Mei, S., Shen, C., Xue, A.: ‘Stability-constrained optimal power flow based on a novel transient stability margin’. Int. Conf. Power System Technology (PowerCon 2006), Chongqing, China, October 2006.
    16. 16)
      • 17. Chan, K.W., Zhou, Q., Chung, T.S.: ‘Dynamic security contingency ranking and generation reallocation using time domain simulation based severity indices’. Int. Conf. Power System Technology (PowerCon 2000), Perth WA, Australia, December 2000, pp. 12751280.
    17. 17)
      • 2. Han, Z.X., Jiang, Q.Y., Cao, Y.J.: ‘Sequential feasible optimal power flow in power systems’, Sci. China E, Tech. Sci., 2009, 52, (2), pp. 429435 (doi: 10.1007/s11431-008-0180-z).
    18. 18)
      • 3. Jiang, Q.Y., Han, Z.X.: ‘Solvability identification and feasibility restoring of divergent optimal power flow problems’, Sci. China E, Tech. Sci., 2009, 52, (4), pp. 944954 (doi: 10.1007/s11431-009-0071-y).
    19. 19)
      • 14. Cai, H.R., Chung, C.Y., Wong, K.P.: ‘Application of differential evolution algorithm for transient stability constrained optimal power flow’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 719728 (doi: 10.1109/TPWRS.2008.919241).
    20. 20)
      • 8. Gan, D., Chattopadhyay, D., Luo, X.: ‘Enhancements to stability constrained OPF to overcome sub-optimality’, Electr. Power Compon. Syst., 2005, 33, (5), pp. 481491 (doi: 10.1080/15325000590504975).
    21. 21)
      • 23. Biegler, L.T., Nocedal, J., Schmid, C., Ternet, D.: ‘Numerical experience with a reduced Hessian method for large scale constrained optimisation’, Comput. Optimisation Appl., 2000, 15, (1), pp. 4567 (doi: 10.1023/A:1008723031056).
    22. 22)
      • 21. Fu, C., Anjan, B.: ‘Contingency ranking based on severity indices in dynamic security analysis’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 258270 (doi: 10.1109/59.780910).
    23. 23)
      • 18. Capitanescu, F., Glavic, M., Ernst, D., Wehenkel, L.: ‘Contingency filtering techniques for preventive security-constrained optimal power flow’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 16901697 (doi: 10.1109/TPWRS.2007.907528).
    24. 24)
      • 12. Xia, Y., Chan, K.W., Liu, M.: ‘Direct nonlinear primal-dual interior point method for transient stability constrained optimal power flow’, IEE Proc. Gener. Transm. Distrib., 2005, 152, (1), pp. 1116 (doi: 10.1049/ip-gtd:20041204).
    25. 25)
      • 22. Ashutosh, T., Venkataramana, A.: ‘Optimal allocation of dynamic VAR support using mixed integer dynamic optimization’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 305314 (doi: 10.1109/TPWRS.2010.2051342).
    26. 26)
      • 16. Li, W., Bose, A.: ‘A coherency based rescheduling method for dynamic security’, IEEE Trans. Power Syst., 1998, 13, (3), pp. 810815 (doi: 10.1109/59.708662).
    27. 27)
      • 4. Momoh, J.A., Koessler, R.J., Bond, M.S., et al: ‘Challenges to optimal power flow’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 444447 (doi: 10.1109/59.575768).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0072
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading