access icon free Fast and robust software-based digital phase-locked loop for power electronics applications

In this study, a fast and fully software-based algorithm for digital phase-locked loop (PLL) is proposed via a new hybrid approach in software and hardware by using an advanced digital signal processor architecture. The proposed algorithm is robust against line disturbances such as phase-angle jump, voltage sag, third harmonic injection, multi-zero crossing and step change in frequency at the input voltage. Performance and robustness of the proposed method are investigated through experimental studies. Furthermore, it is compared with three different PLL algorithms in detail to show its superiority over existing methods.

Inspec keywords: digital signal processing chips; power electronics; digital phase locked loops; power engineering computing

Other keywords: power electronics applications; digital phase-locked loop; PLL algorithms; phase-angle jump; multizero crossing; third harmonic injection; line disturbances; hybrid approach; step change; voltage sag; advanced digital signal processor architecture; software-based algorithm

Subjects: Power convertors and power supplies to apparatus; Power engineering computing; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 3. Santos Filho, R.M., Seixas, P.F., Cortizo, P.C., Torres, L.A.B., Souza, A.F.: ‘Comparison of three single-phase PLL algorithms for UPS applications’, Trans. Ind. Electron., 2008, 55, (8), pp. 29232932 (doi: 10.1109/TIE.2008.924205).
    2. 2)
      • 19. Ogata, K.: ‘Discrete-time control systems’ (Prentice-Hall, NJ, USA, 1995).
    3. 3)
      • 11. Golestan, S., Monfared, M., Freijedo, F.D., Guerrero, J.M.: ‘Dynamics assessment of advanced single-phase PLL structures’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 21672177 (doi: 10.1109/TIE.2012.2193863).
    4. 4)
      • 12. Barbosa Rolim, L.G., Rodrigues da Costa, Jr.D., Aredes, M.: ‘Analysis and software implementation of a robust synchronizing PLL circuit based on the pq theory’, IEEE Trans. Ind. Electron., 2006, 53, (6), pp. 19191926 (doi: 10.1109/TIE.2006.885483).
    5. 5)
      • 2. Karimi-Ghartemani, M., Iravani, M.R.: ‘A method for synchronization of power electronic converters in polluted and variable-frequency environments’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 12631270 (doi: 10.1109/TPWRS.2004.831280).
    6. 6)
      • 15. Chung, S.: ‘A phase tracking system for three phase utility interface inverters’, IEEE Trans. Power Electron., 2000, 15, (3), pp. 431438 (doi: 10.1109/63.844502).
    7. 7)
      • 17. Proakis, J.G., Salehi, M.: ‘Communication systems engineering’ (Prentice-Hall, New Jersey, USA, 2002, 2nd edn.).
    8. 8)
      • 5. Liccardo, F., Marino, P., Raimondo, G.: ‘Robust and fast three-phase PLL tracking system’, Trans. Ind. Electron., 2011, 58, (1), pp. 221231 (doi: 10.1109/TIE.2010.2044735).
    9. 9)
      • 14. Choi, J.W., Kim, Y.K., Kim, H.G.: ‘Digital PLL control for single-phase photovoltaic system’, IEE Proc.-Electr. Power Appl., 2006, 153, (1), pp. 4046 (doi: 10.1049/ip-epa:20045225).
    10. 10)
      • 18. Haykin, S.: ‘Communication systems’ (John Wiley & Sons, USA, 1994, 3rd edn.).
    11. 11)
      • 8. Golestan, S., Monfared, M., Freijedo, F.D., Guerrero, J.M.: ‘Design and tuning of a modified power-based PLL for single-phase grid-connected power conditioning systems’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36393650 (doi: 10.1109/TPEL.2012.2183894).
    12. 12)
      • 9. Wang, Y.F., Li, Y.W.: ‘Grid synchronization PLL based on cascaded delayed signal cancellation’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 19871997 (doi: 10.1109/TPEL.2010.2099669).
    13. 13)
      • 13. El-Amawy, A.A., Mirbod, A.: ‘An efficient software-controlled PLL for low-frequency applications’, IEEE Trans. Ind. Electron., 1988, 35, (2), pp. 341344 (doi: 10.1109/41.192669).
    14. 14)
      • 7. Rodriguez, P., Pou, J., Bergas, J., et al: ‘Decoupled double synchronous reference frame PLL for power converters control’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 584592 (doi: 10.1109/TPEL.2006.890000).
    15. 15)
      • 16. Giroux, P., Sybille, G.: ‘MATLAB/simulink Ver 6.5/simpowersystem toolbox’ (Mathworks Inc., 2006).
    16. 16)
      • 10. Carugati, I., Donato, P., Maestri, S., Carrica, D., Benedetti, M.: ‘Frequency adaptive PLL for polluted single-phase grids’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23962404 (doi: 10.1109/TPEL.2011.2172000).
    17. 17)
      • 6. Fedele, G., Picardi, C., Sgro, D.: ‘A power electrical signal tracking strategy based on the modulating functions method’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 40794087 (doi: 10.1109/TIE.2009.2028352).
    18. 18)
      • 4. Freijedo, F.D., Yepes, A.G., Lopez, O., Vidal, A., Gandoy, J.D.: ‘Three-phase PLLs with fast postfault retracking and steady-state rejection of voltage unbalance and harmonics by means of lead compensation’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 8597 (doi: 10.1109/TPEL.2010.2051818).
    19. 19)
      • 1. Silva, C.H., Pereira, R.R., Borges, L.E., Torres, G.L., Bose, B.K.: ‘A digital PLL scheme for three-phase system using modified synchronous reference frame’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 38143821 (doi: 10.1109/TIE.2010.2040554).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2013.0041
Loading

Related content

content/journals/10.1049/iet-gtd.2013.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading