access icon free Interoperability of voltage source converters in dc grids

This study examines the possibility of operating different voltage source converter topologies in high-voltage direct current grids. The investigation is motivated by growing concern from the utility companies and transmission system operators regarding the compatibility of these converters, especially the behaviour of resultant multi-vendor dc grids during ac and dc network faults. In an attempt to establish the credibility of the expressed concerns, the transient response of illustrative multi-vendor six-terminal dc grids that consists of four two-level converters, a two-switch modular converter and a H-bridge modular converter are examined during ac and dc network faults. The main results obtained and observations drawn are highlighted and discussed.

Inspec keywords: power grids; open systems; power transmission faults; HVDC power convertors; power system transients

Other keywords: utility companies; two-switch modular converter; interoperability; voltage source converter topology; H-bridge modular converter; resultant multivendor dc grids; transient response; two-level converters; high-voltage direct current grids; ac network faults; dc network faults; transmission system operators

Subjects: Power convertors and power supplies to apparatus; d.c. transmission; Power system management, operation and economics

References

    1. 1)
      • 14. Adam, G.P., Ahmed, K.H., Finney, S.J., Williams, B.W.: ‘AC fault ride-through capability of a VSC-HVDC transmission systems’. Energy Conversion Congress and Exposition (ECCE), 2010, pp. 37393745.
    2. 2)
      • 37. Adam, G.P., Ahmed, K.H., Finney, S.J., Williams, B.W.: ‘Generalized modelling of DC grid for stability studies’. Proc. IEEE Power and Energy, and Machine Drives (powereng), Istanbul-Turkey, 2012.
    3. 3)
      • 11. Adam, G.P., Ahmed, K.H., Finney, S.J., Williams, B.W.: ‘Modular multilevel converter for medium-voltage applications’. IEEE Int. Electric Machines and Drives Conf. (IEMDC), 2011, pp. 10131018.
    4. 4)
      • 13. Ilves, K., Antonopoulos, A., Norrga, S., Nee, H.P.: ‘A new modulation method for the modular multilevel converter allowing fundamental switching frequency’. IEEE Eighth Int. Conf. Power Electronics and ECCE Asia (ICPE & ECCE), 2011, pp. 991998.
    5. 5)
      • 2. Buschendorf, M., Weber, J., Bernet, S.: ‘Comparison of IGCT and IGBT for the use in the modular multilevel converter for HVDC applications’. Ninth Int. Multi-Conf., Systems, Signals and Devices (SSD), 2012, pp. 16.
    6. 6)
      • 23. Jinliang, K., Haifeng, L., Gengyin, L., Ming, Z., Hua, Y.: ‘Research on grid connection of wind farm based on VSC-HVDC’. Int. Conf. Power System Technology (POWERCON), 2010, pp. 16.
    7. 7)
      • 16. da Silva, R., Teodorescu, R., Rodriguez, P.: ‘Power delivery in multiterminal VSC-HVDC transmission system for offshore wind power applications’. IEEE PES, Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), 2010, pp. 18.
    8. 8)
      • 10. Adam, G.P., Anaya-Lara, G.O., Burt, G.: ‘Statcom based on modular multilevel converter: dynamic performance and transient response during ac network disturbances’. Proc. Sixth IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2012), 2012, pp. 15.
    9. 9)
      • 29. Adam, G.P., Finney, S.J., Williams, B.W., Trainer, D.R., Oates, C.D.M., Critchley, D.R.: ‘Network fault tolerant voltage-source-converters for high-voltage applications’. Proc. Ninth IET Int. Conf. AC and DC Power Transmission, 2010, pp. 15.
    10. 10)
      • 33. Cespedes, M., Beechner, T., Jian, S.: ‘Averaged modeling and analysis of multilevel converters’. IEEE 12th Workshop Control and Modeling for Power Electronics (COMPEL), 2010, pp. 16.
    11. 11)
      • 21. Adam, G.P., Anaya-Lara, O., Burt, G.: ‘Steady-state and transient performance of DC transmission systems based on HVDC technology’. ACDC Ninth IET Int. Conf. AC and DC Power Transmission, 2010, pp. 15.
    12. 12)
      • 5. Bahrman, M.P., Johnson, B.K.: ‘The ABCs of HVDC transmission technologies’, IEEE Power Energy Mag.,2007, 5, pp. 3244 (doi: 10.1109/MPAE.2007.329194).
    13. 13)
      • 24. Jiuping, P., Nuqui, R., Srivastava, K., Jonsson, T., Holmberg, P., Hafner, Y.J.: ‘AC grid with embedded VSC-HVDC for secure and efficient power delivery’. Energy 2030 Conf. ENERGY 2008, 2008, pp. 16.
    14. 14)
      • 18. Xiguo, G.: ‘A 3.3 kV IGBT module and application in modular multilevel converter for HVDC’. IEEE Int. Symp. Industrial Electronics (ISIE), 2012, pp. 19441949.
    15. 15)
      • 12. Konstantinou, G.S., Ciobotaru, M., Agelidis, V.G.: ‘Operation of a modular multilevel converter with selective harmonic elimination PWM’. IEEE Eighth Int. Conf. Power Electronics and ECCE Asia (ICPE & ECCE), 2011, pp. 9991004.
    16. 16)
      • 28. Hagiwara, M., Akagi, H.: ‘Control and experiment of pulsewidth-modulated modular multilevel converters’, IEEE Trans. Power Electron., 2009, 24, pp. 17371746 (doi: 10.1109/TPEL.2009.2014236).
    17. 17)
      • 4. Jacobson, D., Wang, P., Karawita, C., Ostash, R., Mohaddes, M., Jacobson, B.: ‘Planning the next nelson river HVDC development phase considering LCC vs. VSC technology’. in Cigre 2012, ed, 2012.
    18. 18)
      • 25. Adam, G.P., Anaya-Lara, O., Burt, G., Finney, S.J., Williams, B.W., McDonald, a. J.: ‘Comparison between two VSC-HVDC transmission systems technologies: modular and neutral point clamped multilevel converter’. Proc. IEEE 13th Annual Conf. Industrial Electronic Society IECON2009, Porto-Portugal, 3–5 November 2009.
    19. 19)
      • 9. Konstantinou, G.S., Ciobotaru, M., Agelidis, V.G.: ‘Analysis of multi-carrier PWM methods for back-to-back HVDC systems based on modular multilevel converters’. 37th Annual Conf. IEEE Industrial Electronics Society (IECON 2011), 2011, pp. 43914396.
    20. 20)
      • 8. Xiaodong, Y., Chengyong, Z., Jing, H., Jing, W., Liu, Y.: ‘Key technologies of three-terminal DC transmission system based on modular multilevel converter’. Fourth Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011, pp. 499503.
    21. 21)
      • 7. Adam, G.P., Finney, S.J., Bell, K., Williams, B.W.: ‘Transient capability assessments of HVDC voltage source converters’. IEEE Power and Energy Conf. at Illinois (PECI), 2012, pp. 18.
    22. 22)
      • 22. Qingrui, T., Zheng, X.: ‘Power losses evaluation for modular multilevel converter with junction temperature feedback’. IEEE Power and Energy Society General Meeting, 2011, pp. 17.
    23. 23)
      • 26. Adam, G.P., Ahmed, K.H., Finney, S.J., Bell, K., Williams, B.W.: ‘New breed of network fault-tolerant voltage-source-converter HVDC transmission system’. IEEE Trans. Power Syst., 2013, 28, pp. 335346.
    24. 24)
      • 36. Assefa, H.Y., Danielsen, S., Molinas, M.: ‘Impact of PWM switching on modeling of low frequency power oscillation in electrical rail vehicle’. Proc. 13th European Conf. Power Electronics and Applications EPE '09.2009, pp. 19.
    25. 25)
      • 27. Marquardt, R.: ‘Modular multilevel converter: an universal concept for HVDC-networks and extended DC-bus-applications’. Int. Power Electronics Conf. (IPEC), 2010, pp. 502507.
    26. 26)
      • 17. Gnanarathna, U.N., Gole, A.M., Jayasinghe, R.P.: ‘Efficient modeling of modular multilevel HVDC converters (MMC) on electromagnetic transient simulation programs’, IEEE Trans. Power Deliv., 2011, 26, pp. 316324 (doi: 10.1109/TPWRD.2010.2060737).
    27. 27)
      • 15. Cole, S., Van Hertem, D., Belmans, R.: ‘VSC HVDC as an alternative grid investment in meshed grids’. 2008 First Int. Conf. Infrastructure Systems and Services: Building Networks for a Brighter Future (INFRA), 2008, pp. 16.
    28. 28)
      • 6. Lescale, V.F., Astron, U., Ma, W., Liu, Z.: ‘The Xiangjiaba-Shanghai 800 kV UHVDC project status and special aspects’. Proc. Cigre, Paris, 2012.
    29. 29)
      • 19. Jun, L., Gomis-Bellmunt, O., Ekanayake, J., Jenkins, N.: ‘Control of multi-terminal VSC-HVDC transmission for offshore wind power’. EPE'09 13th European Conf. Power Electronics and Applications, 2009, pp. 110.
    30. 30)
      • 34. Moustafa, M.M.Z., Filizadeh, S.: ‘A VSC-HVDC model with reduced computational intensity’. IEEE, Power and Energy Society General Meeting, 2012, pp. 16.
    31. 31)
      • 3. Callavik, E.M., Lundberg, P., Barrman, M.P., Rosenqvist, R.P.: ‘HVDC technologies for the future onshore and offshore grid’. Proc. Cigre Symp., Grid of the future, Kansas, USA, 2012.
    32. 32)
      • 32. Haghnazari, S., Bina, M.T.: ‘Voltage control of the SVM-modulated STATCOM using the average model’. IPEC 2010 Conf. Proc., 2010, pp. 936940.
    33. 33)
      • 35. Peralta, J., Saad, H., Dennetiere, S., Mahseredjian, J., Nguefeu, S.: ‘Detailed and averaged models for a 401-Level MMC–HVDC System’, IEEE Trans. Power Deliv., 2012, 27, pp. 15011508 (doi: 10.1109/TPWRD.2012.2188911).
    34. 34)
      • 30. Merlin, M.M.C., Green, T.C., Mitcheson, P.D., Trainer, D.R., Critchley, D.R., Crookes, R.W.: ‘A new hybrid multi-level Voltage-Source Converter with DC fault blocking capability’. Proc. Ninth IET Int. Conf. AC and DC Power Transmission2010, pp. 15.
    35. 35)
      • 31. Peralta, J., Saad, H., Dennetiere, S., Mahseredjian, J.: ‘Dynamic performance of average-value models for multi-terminal VSC-HVDC systems’. IEEE Power and Energy Society General Meeting, 2012, pp. 18.
    36. 36)
      • 20. Jiangchao, Q., Saeedifard, M.: ‘Predictive control of a modular multilevel converter for a back-to-back HVDC system’, IEEE Trans. Power Deliv., 2012, 27, pp. 15381547 (doi: 10.1109/TPWRD.2012.2191577).
    37. 37)
      • 1. Sellick, R.L., Akerberg, M.: ‘Comparison of HVDC Light (VSC) and HVDC Classic (LCC) Site Aspects, for a 500 MW 400 kV HVDC Transmission Scheme’. Proc. ACDC2012, 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2012.0768
Loading

Related content

content/journals/10.1049/iet-gtd.2012.0768
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading